Previous |  Up |  Next

Article

Keywords:
closure system; Moore family; convex geometry; (semi)lattice; algorithm
Summary:
In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set---ordered by set inclusion---is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset $P$ is the only convex geometry having a poset of join-irreducible elements isomorphic to $P$ if and only if the width of $P$ is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.
References:
[1] Barbut, M., Monjardet, B.: Ordre et Classification, Algèbre et Combinatoire, tomes I--II. Hachette, Paris (1970). MR 0419311
[2] Berman, J., Bordalo, G.: Finite distributive lattices and doubly irreducible elements. Disc. Math. 178 (1998), 237-243. DOI 10.1016/S0012-365X(97)81832-8 | MR 1483754 | Zbl 0898.06004
[3] Bordalo, G., Monjardet, B.: Reducible classes of finite lattices. Order 13 (1996), 379-390. DOI 10.1007/BF00405597 | MR 1452521 | Zbl 0891.06001
[4] Bordalo, G., Monjardet, B.: The lattice of strict completions of a finite poset. Alg. Univ. 47 (2002), 183-200. DOI 10.1007/s00012-002-8183-2 | MR 1916615 | Zbl 1058.06001
[5] Bordalo, G., Monjardet, B.: Finite orders and their minimal strict completion lattices. Discuss. Math. Gen. Algebra Appl. 23 (2003), 85-100. DOI 10.7151/dmgaa.1065 | MR 2070375 | Zbl 1057.06001
[6] Caspard, N.: A characterization theorem for the canonical basis of a closure operator. Order 16 (1999), 227-230. DOI 10.1023/A:1006444906980 | MR 1765728 | Zbl 0959.06005
[7] Caspard, N., Monjardet, B.: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey. Disc. Appl. Math. 127 (2003), 241-269. DOI 10.1016/S0166-218X(02)00209-3 | MR 1984087
[8] Caspard, N., Monjardet, B.: Some lattices of closure systems. Disc. Math. Theor. Comput. Sci. 6 (2004), 163-190. MR 2041845 | Zbl 1062.06005
[9] Chacron, J.: Nouvelles correspondances de Galois. Bull. Soc. Math. Belgique 23 (1971), 167-178. MR 0302514 | Zbl 0311.06003
[10] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990). MR 1058437 | Zbl 0701.06001
[11] Dilworth, R. P.: Lattices with unique irreducible representations. Ann. of Math. 41 (1940), 771-777. DOI 10.2307/1968857 | MR 0002844
[12] Edelman, P. H., Jamison, R. E.: The theory of convex geometries. Geom. Dedicata 19 (1985), 247-270. DOI 10.1007/BF00149365 | MR 0815204 | Zbl 0577.52001
[13] Erné, M.: Bigeneration in complete lattices and principal separation in ordered sets. Order 8 (1991), 197-221. DOI 10.1007/BF00383404 | MR 1137911
[14] Lorrain, F.: Notes on topological spaces with minimum neighborhoods. Amer. Math. Monthly 76 (1969), 616-627. DOI 10.2307/2316662 | MR 0248715 | Zbl 0207.21201
[15] Monjardet, B.: The consequences of Dilworth's work on lattices with unique irreducible decompositions. Bogart, K. P., Freese, R., Kung, J. The Dilworth theorems. Selected papers of Robert P. Dilworth. Birkhaüser, Boston (1990), 192-201. MR 1111496
[16] Monjardet, B., Raderanirina, V.: The duality between the anti-exchange closure operators and the path independent choice operators on a finite set. Math. Social Sci. 41 (2001), 131-150. DOI 10.1016/S0165-4896(00)00061-5 | MR 1806682 | Zbl 0994.91012
[17] Nation, J. B., Pogel, A.: The lattice of completions of an ordered set. Order 14 (1997), 1-7. DOI 10.1023/A:1005805026315 | MR 1468951 | Zbl 0888.06003
[18] Niederle, J.: Boolean and distributive ordered sets: characterization and representation by sets. Order 12 (1995), 189-210. DOI 10.1007/BF01108627 | MR 1354802 | Zbl 0838.06004
[19] Nourine, L.: Private communication. (2003).
[20] "Ore, O.: Some studies on closure relations. Duke Math. J. 10 (1943), 761-785. DOI 10.1215/S0012-7094-43-01072-5 | MR 0009595
[21] Rabinovitch, I., Rival, I.: The rank of a distributive lattice. Disc. Math. 25 (1979), 275-279. DOI 10.1016/0012-365X(79)90082-7 | MR 0534944 | Zbl 0421.06012
[22] Reading, N.: Order dimension, strong Bruhat order and lattice properties for posets. Order 19 (2002), 73-100. DOI 10.1023/A:1015287106470 | MR 1902662 | Zbl 1007.05097
[23] Schmid, J.: Quasiorders and sublattices of distributive lattices. Order 19 (2002), 11-34. DOI 10.1023/A:1015291410777 | MR 1901058 | Zbl 1006.06006
[24] Wild, M.: A theory of finite closure spaces based on implications. Adv. Math. 108 (1994), 118-139. DOI 10.1006/aima.1994.1069 | MR 1293585 | Zbl 0863.54002
Partner of
EuDML logo