[2] Amann, H.:
Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1-28.
DOI 10.1007/978-1-4615-0701-7_1 |
MR 1971987
[5] Bogovskij, M. E.:
Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094-1098.
Zbl 0499.35022
[6] Cannone, M.:
Viscous flows in Besov spaces. Advances in Math. Fluid Mech., Springer, Berlin (2000), 1-34.
MR 1863208 |
Zbl 0980.35125
[7] Fabes, E. B., Jones, B. F., Rivière, N. M.:
The initial value problem for the Navier-Stokes equations with data in $L^p$. Arch. Rational Mech. Anal. 45 (1972), 222-240.
DOI 10.1007/BF00281533 |
MR 0316915
[10] Frehse, J., Růžička, M.:
Weighted estimates for the stationary Navier-Stokes equations. Acta Appl. Math. 37 53-66 (1994).
DOI 10.1007/BF00995129 |
MR 1308745
[11] Frehse, J., Růžička, M.:
Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal. 128 361-380 (1994).
DOI 10.1007/BF00387714 |
MR 1308859
[12] Frehse, J., Růžička, M.:
On the regularity of the stationary Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 63-95 (1994).
MR 1276763
[13] Frehse, J., Růžička, M.:
Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann. 302 669-717 (1995).
DOI 10.1007/BF01444513 |
MR 1343646
[14] Frehse, J., Růžička, M.:
Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 701-719 (1996).
MR 1469571
[15] Frehse, J., Růžička, M.:
Regularity for steady solutions of the Navier-Stokes equations J. G. Heywood, et al. (eds.), Theory of the Navier-Stokes equations. Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 159-178 (1998).
DOI 10.1142/9789812816740_0013 |
MR 1643033
[16] Frehse, J., Růžička, M.:
A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations 11 (1998), 361-368.
MR 1741851
[17] Fujiwara, D., Morimoto, H.:
An $L_r$-theory of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685-700.
MR 0492980
[18] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York (1998).
MR 2808162
[19] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, Vol. 39, New York (1998).
MR 2808162
[23] Giga, Y.:
Domains of fractional powers of the Stokes operator in $L_r$-spaces. Arch. Rational Mech. Anal. 89 (1985), 251-265.
DOI 10.1007/BF00276874 |
MR 0786549
[24] Giga, Y., Sohr, H.:
On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103-130.
MR 0991022
[26] Kato, T.:
Strong $L^p$-solutions to the Navier-Stokes equations in $\Bbb R^m$ with applications to weak solutions. Math. Z. 187 (1984), 471-480.
DOI 10.1007/BF01174182 |
MR 0760047
[27] Kozono, H., Yamazaki, M.:
Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,\infty}$. Houston J. Math. 21 (1995), 755-799.
MR 1368344
[28] Nečas, J.:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967).
MR 0227584
[29] Simader, C. G., Sohr, H.:
A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains. Adv. Math. Appl. Sci., World Scientific 11 (1992), 1-35.
DOI 10.1142/9789814503594_0001 |
MR 1190728
[31] Sohr, H.:
The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001).
MR 1928881 |
Zbl 0983.35004
[32] Temam, R.:
Navier-Stokes Equations. Theory and numerical analysis. North-Holland, Amsterdam, New York, Tokyo (1984).
MR 0769654 |
Zbl 0568.35002
[33] Triebel, H.:
Interpolation Theory, Function Spaces. Differential Operators. North-Holland, Amsterdam (1978).
MR 0503903 |
Zbl 0387.46033
[34] Wahl, W. von:
Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Math. 45 (1986), 497-503.
MR 0843635