Summary: Let $\cal F$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
[1] Asaad, M., Heliel, A. A.: On $S$-quasinormal embedded subgroups of finite groups. J. Pure App. Algebra 165 (2001), 129-135. DOI 10.1016/S0022-4049(00)00183-3 | MR 1865961
[2] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: Sufficient conditions for supersolvability of finite groups. J. Pure App. Algebra 127 (1998), 113-118. DOI 10.1016/S0022-4049(96)00172-7 | MR 1620696
[6] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York (1967). MR 0224703 | Zbl 0217.07201
[7] Huppert, B., Blackburn, N.: Finite Groups III. Springer-Verlag, Berlin, New York (1982). MR 0662826 | Zbl 0514.20002
[8] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups. Comm. Algebra 26 (1998), 1913-1922. DOI 10.1080/00927879808826248 | MR 1621704
[9] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups II. J. Pure App. Algebra 150 (2000), 53-60. DOI 10.1016/S0022-4049(99)00042-0 | MR 1762920
[17] Wei, H., Wang, Y., Li, Y.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Comm. Algebra 31 (2003), 4807-4816. DOI 10.1081/AGB-120023133 | MR 1998029 | Zbl 1050.20011