Previous |  Up |  Next

Article

Keywords:
$S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation
Summary:
Let $\cal F$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
References:
[1] Asaad, M., Heliel, A. A.: On $S$-quasinormal embedded subgroups of finite groups. J. Pure App. Algebra 165 (2001), 129-135. DOI 10.1016/S0022-4049(00)00183-3 | MR 1865961
[2] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: Sufficient conditions for supersolvability of finite groups. J. Pure App. Algebra 127 (1998), 113-118. DOI 10.1016/S0022-4049(96)00172-7 | MR 1620696
[3] Deskins, W. E.: On quasinormal subgroups of finite groups. Math. Z. 82 (1963), 125-132. DOI 10.1007/BF01111801 | MR 0153738 | Zbl 0114.02004
[4] Kegel, O. H.: Sylow Gruppen und subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221. DOI 10.1007/BF01195169 | MR 0147527 | Zbl 0102.26802
[5] Guo, X. Y., Shum, K. P.: On c-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups. Arch. Math. 80 (2003), 561-569. DOI 10.1007/s00013-003-0810-4 | MR 1997521 | Zbl 1050.20010
[6] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York (1967). MR 0224703 | Zbl 0217.07201
[7] Huppert, B., Blackburn, N.: Finite Groups III. Springer-Verlag, Berlin, New York (1982). MR 0662826 | Zbl 0514.20002
[8] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups. Comm. Algebra 26 (1998), 1913-1922. DOI 10.1080/00927879808826248 | MR 1621704
[9] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups II. J. Pure App. Algebra 150 (2000), 53-60. DOI 10.1016/S0022-4049(99)00042-0 | MR 1762920
[10] Li, Shirong, He, Xuanli: On normally embedded subgroups of prime power order in finite groups. Comm. Algebra 36 (2008), 2333-2340. DOI 10.1080/00927870701509370 | MR 2418390 | Zbl 1146.20015
[11] Li, Yangming, Wang, Yanming: On $\pi$-quasinormally embedded subgroups of finite group. J. Algebra 281 (2004), 109-123. DOI 10.1016/j.jalgebra.2004.06.026 | MR 2091963 | Zbl 1079.20026
[12] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. DOI 10.1006/jabr.1998.7429 | MR 1643106 | Zbl 0910.20015
[13] Srinivasan, S.: Two sufficient conditions for supersolvability of finite groups. Israel J. Math. 35 (1980), 210-214. DOI 10.1007/BF02761191 | MR 0576471 | Zbl 0437.20012
[14] Tate, J.: Nilpotent quotient groups. Topology 3 (1964), 109-111. DOI 10.1016/0040-9383(64)90008-4 | MR 0160822 | Zbl 0125.01503
[15] Wang, Yanming: c-normality of groups and its properties. J. Algebra 180 (1996), 954-965. DOI 10.1006/jabr.1996.0103 | MR 1379219 | Zbl 0847.20010
[16] Wei, H.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm. Algebra 29 (2001), 2193-2200. DOI 10.1081/AGB-100002178 | MR 1837971 | Zbl 0990.20012
[17] Wei, H., Wang, Y., Li, Y.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Comm. Algebra 31 (2003), 4807-4816. DOI 10.1081/AGB-120023133 | MR 1998029 | Zbl 1050.20011
Partner of
EuDML logo