[1] Arnold, V. I.:
Ordinary Differential Equations. Springer Berlin (1992); translated from the third Russian edition.
MR 1162307 |
Zbl 0858.34001
[2] Conca, C., Martín, J. San, Tucsnak, M.:
Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019-1042.
MR 1759801
[3] Cumsille, P., Tucsnak, M.:
Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595-623.
DOI 10.1002/mma.702 |
MR 2205973
[5] Farwiq, R., Sohr, H.:
The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values. Math. Methods Appl. Sci. 17 (1994), 269-291.
DOI 10.1002/mma.1670170405 |
MR 1265181
[8] Galdi, G. P.:
On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791.
MR 1942470
[9] Galdi, G. P., Silvestre, A. L.:
Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144.
DOI 10.1007/978-1-4615-0777-2_8 |
MR 1970608 |
Zbl 1046.35084
[15] Hoffmann, K.-H., Starovoitov, V. N.:
On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999), 633-648.
MR 1725677 |
Zbl 0966.76016
[16] Inoue, A., Wakimoto, M.:
On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319.
MR 0481649 |
Zbl 0381.35066
[17] Lions, J.-L., Magenes, E.:
Non-homogeneous boundary value problems and applications. Vol. I. Springer Berlin-Heidelberg-New York (1972).
MR 0350177 |
Zbl 0223.35039
[18] Martín, J. A. San, Starovoitov, V., Tucsnak, M.:
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), 113-147.
DOI 10.1007/s002050100172 |
MR 1870954
[21] Takahashi, T.:
Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003), 1499-1532.
MR 2029294 |
Zbl 1101.35356
[23] Temam, R.:
Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset. North-Holland Amsterdam-New York-Oxford (1984).
MR 0769654