Previous |  Up |  Next

Article

Keywords:
Navier-Stokes equations; incompressible fluid; rigid bodies
Summary:
In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\Bbb R^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known {\it a priori}, so we deal with a free boundary value problem. \endgraf We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.
References:
[1] Arnold, V. I.: Ordinary Differential Equations. Springer Berlin (1992); translated from the third Russian edition. MR 1162307 | Zbl 0858.34001
[2] Conca, C., Martín, J. San, Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019-1042. MR 1759801
[3] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595-623. DOI 10.1002/mma.702 | MR 2205973
[4] Desjardins, B., Esteban, M. J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999), 59-71. DOI 10.1007/s002050050136 | MR 1682663 | Zbl 0943.35063
[5] Farwiq, R., Sohr, H.: The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values. Math. Methods Appl. Sci. 17 (1994), 269-291. DOI 10.1002/mma.1670170405 | MR 1265181
[6] Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002), 463-484. DOI 10.1023/A:1023245704966 | MR 1948192 | Zbl 1090.35137
[7] Feireisl, E.: On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003), 281-308. DOI 10.1007/s00205-002-0242-5 | MR 1981859 | Zbl 1090.76061
[8] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. MR 1942470
[9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. DOI 10.1007/978-1-4615-0777-2_8 | MR 1970608 | Zbl 1046.35084
[10] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176 (2005), 331-350. DOI 10.1007/s00205-004-0348-z | MR 2185661 | Zbl 1081.35076
[11] Maday, C. Grandmont,Y.: Existence for an unsteady fluid-structure interaction problem. M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. DOI 10.1051/m2an:2000159 | MR 1763528 | Zbl 0969.76017
[12] Hartman, P.: Ordinary Differential Equations. Birkhäuser Boston (1982). MR 0658490 | Zbl 0476.34002
[13] Heywood, J. G.: The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681. DOI 10.1512/iumj.1980.29.29048 | MR 0589434 | Zbl 0494.35077
[14] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150 (1999), 307-348. DOI 10.1007/s002050050190 | MR 1741259 | Zbl 0949.35106
[15] Hoffmann, K.-H., Starovoitov, V. N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999), 633-648. MR 1725677 | Zbl 0966.76016
[16] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. MR 0481649 | Zbl 0381.35066
[17] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer Berlin-Heidelberg-New York (1972). MR 0350177 | Zbl 0223.35039
[18] Martín, J. A. San, Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), 113-147. DOI 10.1007/s002050100172 | MR 1870954
[19] Serre, D.: Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987), 99-110 French. DOI 10.1007/BF03167757 | MR 0899206 | Zbl 0655.76022
[20] Silvestre, A. L.: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid. J. Math. Anal. Appl. 274 (2002), 203-227. DOI 10.1016/S0022-247X(02)00289-5 | MR 1936694 | Zbl 1121.76321
[21] Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003), 1499-1532. MR 2029294 | Zbl 1101.35356
[22] Takahashi, T., Tucsnak, M.: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004), 53-77. DOI 10.1007/s00021-003-0083-4 | MR 2027754 | Zbl 1054.35061
[23] Temam, R.: Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset. North-Holland Amsterdam-New York-Oxford (1984). MR 0769654
Partner of
EuDML logo