Previous |  Up |  Next

Article

Title: Modeling the role of constant and time varying recycling delay on an ecological food chain (English)
Author: Mukhopadhyay, Banibrata
Author: Bhattacharyya, Rakhi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 3
Year: 2010
Pages: 221-240
Summary lang: English
.
Category: math
.
Summary: We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results. (English)
Keyword: autotroph
Keyword: herbivore
Keyword: nutrient recycling
Keyword: global stability
Keyword: Hopf-bifurcation
Keyword: variable delay
Keyword: two-timing expansion
MSC: 34C25
MSC: 34D23
MSC: 34K13
MSC: 34K18
MSC: 34K20
MSC: 34K60
MSC: 92D25
MSC: 92D40
idZBL: Zbl 1224.34270
idMR: MR2657835
DOI: 10.1007/s10492-010-0009-5
.
Date available: 2010-07-20T13:45:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140396
.
Reference: [1] Bandyopadhyay, M., Bhattacharyya, R., Mukhopadhyay, B.: Dynamics of an autotroph-herbivore ecosystem with nutrient recycling.Ecol. Model. 176 (2004), 201-209. 10.1016/j.ecolmodel.2003.10.030
Reference: [2] Beltrami, E., Carroll, T. O.: Modeling the role of viral disease in recurrent phytoplankton blooms.J. Math. Biol. 32 (1994), 857-863. Zbl 0825.92122, 10.1007/BF00168802
Reference: [3] Benson, D. L., Sherratt, J. A., Maini, P. K.: Diffusion driven instability in an inhomogeneous domain.Bull. Math. Biol. 55 (1993), 365-384. Zbl 0758.92003, 10.1007/BF02460888
Reference: [4] Benson, D. L., Maini, P. K., Sherratt, J. A.: Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients.Math. Comp. Model. 17 (1993), 29-34. Zbl 0784.92004, MR 1236162, 10.1016/0895-7177(93)90025-T
Reference: [5] Beretta, E., Bischi, G. I., Solimano, F.: Stability in chemostat equations with delayed recycling.J. Math. Biol. 28 (1990), 99-111. Zbl 0665.45006, MR 1036414, 10.1007/BF00171521
Reference: [6] Bhattacharyya, R., Mukhopadhyay, B.: Oscillation and persistence in a mangrove ecosystem in presence of delays.J. Biol. Syst. 11 (2003), 351-364. Zbl 1041.92038, 10.1142/S021833900300097X
Reference: [7] Bischi, G. I.: Effects of time lags on transient characteristics of a nutrient recycling model.Math. Biosci. 109 (1992), 151-175. 10.1016/0025-5564(92)90043-V
Reference: [8] Colinvaux, P.: Ecology II.John Wiley & Sons Chichester (1993).
Reference: [9] Crawley, M. J.: Herbivory. The dynamics of animal plant interaction. Studies in Ecology Vol. 10.University of California Press Berkley (1983).
Reference: [10] Angelis, D. I. De, Bartell, S. M., Brenkert, A. L.: Effect of nutrient recycling and food chain length on the resilience.Amer. Naturalist 134 (1989), 778-805. 10.1086/285011
Reference: [11] Angelis, D. L. De: Dynamics of Nutrient Recycling and Food Webs.Chapman & Hall London (1992).
Reference: [12] Farkas, M., Freedman, H. I.: The stable coexistence of competing species on a renewable resource.J. Math. Anal. Appl. 138 (1989), 461-472. Zbl 0661.92021, MR 0991036, 10.1016/0022-247X(89)90303-X
Reference: [13] Ghosh, D., Sarkar, A. K.: Oscillatory behaviour of an autotroph-herbivore system with a type-III uptake function.Int. J. Syst. Sci. 28 (1997), 259-264. Zbl 0874.92033, 10.1080/00207729708929385
Reference: [14] Ghosh, D., Sarkar, A. K.: Stability and oscillations in a resource-based model of two interacting species with nutrient cycling.Ecol. Model. 107 (1998), 25-33. 10.1016/S0304-3800(97)00203-2
Reference: [15] Ghosh, D., Sarkar, A. K.: Qualitative analysis of autotroph-herbivore system with nutrient diffusion.Korean J. Comput. Appl. Math. 6 (1999), 589-599. Zbl 0938.92033, MR 1710208, 10.1007/BF03009951
Reference: [16] Hallam, T. G.: Structural sensitivity of grazing formulations in nutrient controlled plankton models.J. Math. Biol. 5 (1978), 261-280. Zbl 0379.92015, MR 0645277, 10.1007/BF00276122
Reference: [17] Hassard, B. D., Kazarinoff, N. D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation.Cambridge University Press Cambridge (1981). Zbl 0474.34002, MR 0603442
Reference: [18] Holling, C. S.: The functional response population regulation.Mem. Entomol. Soc. Can. 45 (1965), 1-60. 10.4039/entm9745fv
Reference: [19] Jang, S. R.-J.: Dynamics of variable-yield nutrient-phytoplankton-zooplankton models with nutrient recycling and self-shading.J. Math. Biol. 40 (2000), 229-250. Zbl 0998.92039, MR 1752127, 10.1007/s002850050179
Reference: [20] Kreysig, E.: Introductory Functional Analysis with Applications.John Wiley & Sons New York (1978). MR 0467220
Reference: [21] Ludwig, D., Jones, D. D., Holling, C. S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest.J. Anim. Econ. 47 (1978), 315-332. 10.2307/3939
Reference: [22] Maini, P. K., Benson, D. L., Sherratt, J. A.: Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients.IMA J. Math. Appl. Med. Biol. 9 (1992), 197-213. Zbl 0767.92004, MR 1202777, 10.1093/imammb/9.3.197
Reference: [23] Mukherjee, D., Ray, S., Sinha, D. K.: Bifurcation analysis of a detritus-based ecosystem with time delay.J. Biol. Syst. 8 (2000), 255-261. Zbl 1009.92036, 10.1142/S0218339000000183
Reference: [24] Mukopadhyay, B., Bhattacharyya, R.: A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms.J. Biol. Phys. 31 (2005), 3-22. 10.1007/s10867-005-2306-x
Reference: [25] Mukopadhyay, B., Bhattacharyya, R.: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity.Ecol. Model. 198 (2006), 163-173. 10.1016/j.ecolmodel.2006.04.005
Reference: [26] Mukhopadhyay, B., Bhattacharyya, R.: Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system.Bull. Math. Biol. 68 (2006), 293-313. MR 2224770, 10.1007/s11538-005-9007-2
Reference: [27] Muratori, S., Rinaldi, S.: Low- and high-frequency oscillations in three-dimensional food chain systems.SIAM J. Appl. Math. 52 (1992), 1688-1706. Zbl 0774.92024, MR 1191357, 10.1137/0152097
Reference: [28] Nisbet, R. M., Mckinstry, J., Gurney, W. S. C.: A ``strategic'' model of material cycling in a closed ecosystem.Math. Biosci. 64 (1983), 99-113. Zbl 0524.92027, 10.1016/0025-5564(83)90030-5
Reference: [29] Pardo, O.: Global stability for a phytoplankton-nutrient system.J. Biol. Syst. 8 (2000), 195-209. 10.1142/S0218339000000122
Reference: [30] Powell, T., Richardson, P. J.: Temporal variation, spatial heterogeneity and competition for resources in plankton systems: theoretical models.Am. Nat. 125 (1985), 431-463. 10.1086/284352
Reference: [31] Ruan, S.: Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling.J. Math. Biol. 31 (1993), 633-654. Zbl 0779.92021, MR 1237092, 10.1007/BF00161202
Reference: [32] Ruan, S.: The effect of delays on stability and persistence in plankton models.Nonlinear Anal., Theory Methods Appl. 24 (1995), 575-585. Zbl 0830.34067, MR 1315696, 10.1016/0362-546X(95)93092-I
Reference: [33] Ruan, S.: Oscillations in plankton models with nutrient recycling.J. Theor. Biol. 208 (2001), 15-26. 10.1006/jtbi.2000.2196
Reference: [34] Ruan, S., Wolkowicz, G.: Uniform persistence in plankton models with delayed nutrient recycling.Can. Appl. Math. Q. 3 (1995), 219-235. MR 1360033
Reference: [35] Sarkar, A. K., Mitra, D., Roy, S., Roy, A. B.: Permanence and oscillatory co-existence of a detritus-based prey-predator model.Ecol. Model. 53 (1991), 147-156. 10.1016/0304-3800(91)90146-R
Reference: [36] Sarkar, A. K., Roy, A. B.: Oscillatory behavior in a resource-based plant-herbivore model with random herbivore attack.Ecol. Model. 68 (1993), 213-226. 10.1016/0304-3800(93)90018-N
Reference: [37] Sikder, A., Roy, A. B.: Limit cycles in a prey-predator systems.Appl. Math. Lett. 6 (1993), 91-95. MR 1347294, 10.1016/0893-9659(93)90042-L
Reference: [38] Schley, D., Gourley, S. A.: Linear stability criteria for population models with periodically perturbed delays.J. Math. Biol. 40 (2000), 500-524. Zbl 0961.92026, MR 1770938, 10.1007/s002850000034
Reference: [39] Sherratt, J. A.: Turing bifurcations with a temporally varying diffusion coefficient.J. Math. Biol. 33 (1995), 295-308. Zbl 0812.92024, MR 1331510, 10.1007/BF00169566
Reference: [40] Sherratt, J. A.: Diffusion-driven instability in oscillating environments.Eur. J. Appl. Math. 6 (1995), 355-372. Zbl 0847.35066, MR 1343087, 10.1017/S0956792500001893
Reference: [41] Smith, O. L.: Food Webs.Chapman & Hall London (1982).
Reference: [42] Svirezhev, Y. M., Logofet, D. O.: Stability of Biological Communities.Mir Moscow (1983). MR 0723326
Reference: [43] Whittaker, R. H.: Communities and Ecosystems.Macmillan New York (1975).
.

Files

Files Size Format View
AplMat_55-2010-3_3.pdf 356.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo