[1] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland Amsterdam-New York-Oxford (1978).
MR 0520174
[2] Clement, P.:
Approximation by finite element functions using local regularization. Rev. Franc. Automat. Inform. Rech. Operat. 9, R-2 (1975), 77-84.
MR 0400739 |
Zbl 0368.65008
[3] Duvaut, G., Lions, J.-L.:
Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, Band 219. Springer Berlin-Heidelberg-New York (1976).
MR 0521262
[4] Glowinski, R.:
Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer New York (1984).
MR 0737005
[5] Haslinger, J., Hlaváček, I., Nečas, J.:
Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Vol. IV P. G. Ciarlet et al. North-Holland Amsterdam (1995), 313-485.
MR 1422506
[8] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.:
Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences, Vol. 66. Springer New York (1988).
DOI 10.1007/978-1-4612-1048-1 |
MR 0952855
[9] Kikuchi, N., Oden, J. T.:
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, Vol. 8. SIAM Philadelphia (1988).
MR 0961258
[11] Ligurský, T.:
Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution. Diploma thesis MFF UK, 2007 ( http://artax.karlin.mff.cuni.cz/ {ligut2am/tl21.pdf}).