[1] Ainsworth, M., Oden, J. T.:
A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley Interscience, John Wiley & Sons New York (2000).
MR 1885308
[3] Babuška, I., Strouboulis, T.:
The Finite Element Method and its Reliability. Clarendon Press Oxford (2001).
MR 1857191
[4] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.:
Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace, Poisson, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347-392.
DOI 10.1002/num.1690120303 |
MR 1388445
[9] Brandts, J. H., Chen, Y. P.:
Superconvergence of least-squares mixed finite element methods. Int. J. Numer. Anal. Model. 3 (2006), 303-311.
MR 2237884
[11] Brezzi, F.:
On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151.
MR 0365287 |
Zbl 0338.90047
[12] Brezzi, F., J. Douglas, Jr., Fortin, M., Marini, L. D.:
Efficient rectangular mixed finite elements in two and three space variables. Mathematical Modelling and Numerical Analysis 21 (1987), 581-604.
DOI 10.1051/m2an/1987210405811 |
MR 0921828
[15] Cai, Z., Lazarov, R. D., Manteuffel, T. A., McCormick, S. F.:
First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31 (1994), 1785-1799.
DOI 10.1137/0731091 |
MR 1302685 |
Zbl 0813.65119
[17] Chen, C. M.:
Structure Theory of Superconvergence of Finite Elements. Hunan Science Press Hunan (2001), Chinese.
MR 0840307
[18] Chen, C. M., Huang, Y. Q.: High Accuracy Theory of Finite Element Methods. Hunan Science and Technology Press Hunan (1995), Chinese.
[20] Chen, Z.:
Finite Element Methods and Their Applications. Scientific Computation. Springer Berlin (2005).
MR 2158541
[22] Douglas, J., Dupont, T., Wahlbin, L.:
Optimal $L^\infty$ error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comput. 29 (1975), 475-483.
MR 0371077
[25] Ewing, R. E., Lazarov, R. D., Wang, J.:
Superconvergence of the velocity along the Gauss lines in mixed finite element methods. SIAM J. Numer. Anal. 28 (1991), 1015-1029.
DOI 10.1137/0728054 |
MR 1111451 |
Zbl 0733.65065
[28] Gastaldi, L., Nochetto, R. H.:
Optimal $L^\infty$-error estimates for nonconforming and mixed finite element methods of lowest order. Numer. Math. 50 (1987), 587-611.
DOI 10.1007/BF01408578 |
MR 0880337
[29] Gastaldi, L., Nochetto, R. H.:
Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO, Modélisation Math. Anal. Numér. 23 (1989), 103-128.
DOI 10.1051/m2an/1989230101031 |
MR 1015921 |
Zbl 0673.65060
[30] Jiang, B.-N.:
The Least-Squares Finite Element Method. Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer Berlin (1998).
MR 1639101
[31] Křížek, M., Neittaanmäki, P.:
Bibliography on superconvergence. Finite element methods. Superconvergence, post-processing, and a posteriori estimates M. Kř'ižek, P. Neittaanmäki, R. Stenberg Marcel Dekker New York (1998), 315-348.
MR 1602730
[32] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, 50. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1990).
MR 1066462
[34] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press Beijing (2006).
[35] Lin, Q., Pan, J. H.:
High accuracy for mixed finite element methods in Raviart-Thomas element. J. Comput. Math. 14 (1996), 175-182.
MR 1399911 |
Zbl 0846.65062
[36] Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Elements. Hebei University Press Hebei (1996), Chinese.
[38] Lin, R., Zhang, Z.: Convergence analysis for least-squares approximations to solutions of second-order two-point boundary value problems. Submitted.
[40] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.:
Least-squares mixed finite elements for second-order elliptic problems. SIAM J. Numer. Anal. 31 (1994), 1368-1377.
DOI 10.1137/0731071 |
MR 1293520 |
Zbl 0806.65108
[42] Raviart, P. A., Thomas, J. M.:
A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes Math. 606 I. Galligani, E. Magenes Springer Berlin (1977), 292-315.
MR 0483555
[43] Verfürth, R.: A Review of Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Chichester-Stuttgart (1996).
[44] Wahlbin, L. B.:
Superconvergence in Galerkin Finite Flement Methods. Lecture Notes Math. 1605. Springer Berlin (1995).
MR 1439050
[45] Wheeler, M. F.:
An optimal $L_{\infty}$ error estimate for Galerkin approximations to solutions of two-point boundary value problems. SIAM J. Numer. Anal. 10 (1973), 914-917.
DOI 10.1137/0710077 |
MR 0343659 |
Zbl 0266.65061
[46] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press Beijing (2008).
[47] Zhang, Z.:
Derivative superconvergence points in finite element solutions of Poisson equation for the serendipity and intermediate families. A theoretical justification. Math. Comput. 67 (1998), 541-552.
DOI 10.1090/S0025-5718-98-00942-9 |
MR 1459393
[48] Zhang, Z.: Recovery techniques in finite element methods. In: Adaptive Computations: Theory and Algorithms T. Tang, J. Xu Science Publisher (2007), 297-365.
[49] Zhu, Q.: High Accuracy and Post-Processing Theory of the Finite Element Method. Science Press Beijing (2008), Chinese.
[50] Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z.:
The Finite Element Method, 6th ed. McGraw-Hill London (2005).
MR 3292660