[1] Babuška, I., Osborn, J. F.:
Estimate for the errors in eigenvalue and eigenvector approximation by Galerkin methods with particular attention to the case of multiple eigenvalue. SIAM J. Numer. Anal. 24 (1987), 1249-1276.
DOI 10.1137/0724082 |
MR 0917451
[8] Ciarlet, P.:
The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[9] Girault, V., Raviart, P.-A.:
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Berlin (1986).
MR 0851383 |
Zbl 0585.65077
[10] Glowinski, R., Pironneau, O.:
On a mixed finite element approximation of the Stokes problem. I. Convergence of the approximate solution. Numer. Math. 33 (1979), 397-424.
MR 0553350
[11] Han, H.:
Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984), 223-233.
MR 0815417 |
Zbl 0573.65083
[12] Jia, S., Xie, H., Yin, X., Gao, S.:
Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial Differ. Equations 24 (2008), 435-448.
DOI 10.1002/num.20268 |
MR 2382790 |
Zbl 1151.65086
[15] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. China Sci. Press Beijing (2006).
[16] Lin, Q., Lü, T.:
Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn. Math. Schrift 158 (1984), 1-10.
MR 0793412
[17] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Press Hebei (1996), Chinese.
[19] Lin, Q., Zhu, Q.: Preprocessing and Postprocessing for the Finite Element Method. Shanghai Sci. Tech. Publishers Shanghai (1994), Chinese.
[22] Shaidurov, V.:
Multigrid Methods for Finite Elements. Kluwer Academic Publishers Dordrecht (1995).
MR 1335921 |
Zbl 0837.65118
[24] Yang, Y.: An Analysis of the Finite Element Method for Eigenvalue Problems. Guizhou People Public Press Guizhou (2004), Chinese.