[1] Coifman, R., Lions, P. -L., Meyer, Y., Semmes, S.:
Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72 (1993), 247-286.
MR 1225511 |
Zbl 0864.42009
[2] Constantin, P.:
Remarks on the Navier-Stokes equations. In: New Perspectives in Turbulence Springer New York (1991), 229-261.
MR 1126937
[3] Foias, C.:
Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$. Bull. Soc. Math. Fr. 89 (1961), 1-8 French.
MR 0141902 |
Zbl 0107.07602
[6] Kato, T.:
Strong $L^p$ solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Bras. Mat. 22 (1992), 127-155.
DOI 10.1007/BF01232939 |
MR 1179482
[9] Lemarié-Rieusset, P. G.:
Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Boca Raton (2002).
MR 1938147 |
Zbl 1034.35093
[12] Murat, F.:
Compacité par compensation. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 5 (1978), 489-507 French.
MR 0506997 |
Zbl 0399.46022
[15] Stein, E. M.:
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press Princeton (1993).
MR 1232192 |
Zbl 0821.42001
[16] Stein, E. M., Weiss, G.:
Introduction to Fourier Analysis on Euclidean spaces. Princeton Mathematical series. Princeton University Press Princeton (1971).
MR 0304972
[17] Tartar, L.:
Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, Edinburgh 1979. Res. Notes Math. 39 (1979), 136-212.
MR 0584398
[18] Temam, R.:
Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Amsterdam (1977).
MR 0609732 |
Zbl 0383.35057