[2] Baiocchi, C.:
Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert. Ann. Mat. Pura Appl., IV. Ser. 76 (1967), 233-304 Italian.
MR 0223697 |
Zbl 0153.17202
[3] Barbu, V.:
Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing Leyden (1976).
MR 0390843 |
Zbl 0328.47035
[4] Bonetti, E., Bonfanti, G.:
Existence and uniqueness of the solution to a 3D thermoviscoelastic system. Electron. J. Differ. Equ. (2003), Electronic.
MR 1971116 |
Zbl 1034.74022
[9] Bonfanti, G., Frémond, M., Luterotti, F.:
Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10 (2000), 1-24.
MR 1769184
[10] Brezis, H.:
Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5 North-Holland, Elsevier Amsterdam-London, New York (1973), French.
MR 0348562 |
Zbl 0252.47055
[15] Frémond, M.: Phase change in mechanics. Lecture notes of XXX Scuola estiva di Fisica Matematica, Ravello, 2005. (to appear).
[16] Germain, P.:
Cours de mécanique des milieux continus. Tome I: Théorie générale. Masson Paris (1973), French.
MR 0368541 |
Zbl 0254.73001
[18] Horn, W., Sprekels, J., Zheng, S.:
Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl. 6 (1996), 227-241.
MR 1385769 |
Zbl 0858.35053
[19] Krejčí, P., Rocca, E., Sprekels, J.:
Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions. J. London Math. Soc. 76 (2007), 197-210.
DOI 10.1112/jlms/jdm032 |
MR 2351617
[21] Krejčí, P., Sprekels, J., Stefanelli, U.:
One-dimensional thermo-viscoplastic processes with hysteresis and phase transitions. Adv. Math. Sci. Appl. 13 (2003), 695-712.
MR 2029939 |
Zbl 1049.74036
[22] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[24] Miranville, A., Zelik, S.:
Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545-582.
DOI 10.1002/mma.464 |
MR 2041814 |
Zbl 1050.35113
[25] Nirenberg, L.:
On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 123 (1959), 115-162.
MR 0109940 |
Zbl 0088.07601
[27] Simon, J.:
Compact sets in the space {$L^p(0,T;B)$}. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96.
MR 0916688
[29] Stefanelli, U.: Models of phase change with microscopic movements. PhD. Thesis University of Pavia (2003).