Previous |  Up |  Next

Article

Keywords:
singular Dirichlet boundary value problem; dead core; positive solution; dead core solution; pseudodead core solution; existence; $\phi $-Laplacian
Summary:
The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u'))' = \lambda f(t,u,u')$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable.
References:
[1] Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Clarendon Press Oxford (1975). Zbl 0315.76052
[2] Agarwal, R. P., O'Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi$-Laplacian and their applications. Abstr. Appl. Anal. ID 96826 (2006), 1-30. DOI 10.1155/AAA/2006/96826 | MR 2211656 | Zbl 1147.34007
[3] Agarwal, R. P., O'Regan, D., Staněk, S.: Positive and dead core solutions of singular Dirichlet boundary value problems with $\phi$-Laplacian. Comput. Math. Appl. 54 (2007), 255-266. DOI 10.1016/j.camwa.2006.12.026 | MR 2337856
[4] Baxley, J. V., Gersdorff, G. S.: Singular reaction-diffusion boundary value problems. J. Differ. Equations 115 (1995), 441-457. DOI 10.1006/jdeq.1995.1022 | MR 1310940 | Zbl 0815.35019
[5] Bobisud, L. E.: Behavior of solutions for a Robin problem. J. Differential Equations 85 (1990), 91-104. DOI 10.1016/0022-0396(90)90090-C | MR 1052329 | Zbl 0704.34033
[6] Bobisud, L. E.: Asymptotic dead cores for reaction-diffusion equations. J. Math. Anal. Appl. 147 (1990), 249-262. DOI 10.1016/0022-247X(90)90396-W | MR 1044698 | Zbl 0706.34052
[7] Bobisud, L. E., O'Regan, D., Royalty, W. D.: Existence and nonexistence for a singular boundary value problem. Appl. Anal. 28 (1988), 245-256. DOI 10.1080/00036818808839765 | MR 0960389 | Zbl 0628.34025
[8] Polášek, V., Rachůnková, I.: Singular Dirichlet problem for ordinary differential equations with $\phi$-Laplacian. Math. Bohem. 130 (2005), 409-425. MR 2182386 | Zbl 1114.34017
[9] Wang, J., Gao, W.: Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions. Differ. Equ. Dyn. Syst. 5 (1997), 175-185. MR 1657262 | Zbl 0891.34022
Partner of
EuDML logo