Article
Keywords:
second order ODE; boundedness of solutions; linear perturbations
Summary:
Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
References:
[2] Bellman, R.:
Stability Theory of Differential Equations. McGraw-Hill Book Company, New York, 1953.
MR 0061235 |
Zbl 0053.24705
[3] Cesari, L.:
Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. 2nd ed., Springer-Verlag, Berlin, 1963.
Zbl 0111.08701
[4] Galbraith, A., McShane, E. J., Parrish, G.:
On the solutions of the linear second-order differential equations. Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249.
DOI 10.1073/pnas.53.2.247 |
MR 0174817
[6] Manfrin, R.:
Quadratic forms for the Liouville equation $\,w_{tt}+ \lambda ^2a(t) w=0$ with applications to Kirchhoff equation. Portugal. Math. 65 (2008), 447–484.
DOI 10.4171/PM/1821 |
MR 2483347 |
Zbl 1160.35477
[8] Manfrin, R.:
On the boundedness of solutions of the equation $\, u^{\prime \prime }+ (1+f(t)) u=0$. Discrete Contin. Dynam. Systems 23 (2009), 991–1008.
MR 2461836 |
Zbl 1190.34037
[9] Opial, Z.:
Nouvelles remarques sur l’équation différentielle $u^{\prime \prime }+ a(t) u=0$. Ann. Polon. Math. 6 (1959), 75–81.
MR 0104864 |
Zbl 0085.07003