Previous |  Up |  Next

Article

Keywords:
second order ODE; boundedness of solutions; linear perturbations
Summary:
Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
References:
[1] Bellman, R.: A stability property of solutions of linear differential equations. Duke Math. J. 11 (1944), 513–516. DOI 10.1215/S0012-7094-44-01146-4 | MR 0010761 | Zbl 0061.18503
[2] Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Company, New York, 1953. MR 0061235 | Zbl 0053.24705
[3] Cesari, L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. 2nd ed., Springer-Verlag, Berlin, 1963. Zbl 0111.08701
[4] Galbraith, A., McShane, E. J., Parrish, G.: On the solutions of the linear second-order differential equations. Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249. DOI 10.1073/pnas.53.2.247 | MR 0174817
[5] Knowles, I.: On stability conditions for second order linear differential equations. J. Differential Equations 34 (1979), 179–203. DOI 10.1016/0022-0396(79)90003-2 | MR 0550039 | Zbl 0388.34029
[6] Manfrin, R.: Quadratic forms for the Liouville equation $\,w_{tt}+ \lambda ^2a(t) w=0$ with applications to Kirchhoff equation. Portugal. Math. 65 (2008), 447–484. DOI 10.4171/PM/1821 | MR 2483347 | Zbl 1160.35477
[7] Manfrin, R.: $ L^p$ solutions of second order differential equations. Funkcial. Ekvac. 52 (2009), 255–279. DOI 10.1619/fesi.52.255 | MR 2547105 | Zbl 1175.34044
[8] Manfrin, R.: On the boundedness of solutions of the equation $\, u^{\prime \prime }+ (1+f(t)) u=0$. Discrete Contin. Dynam. Systems 23 (2009), 991–1008. MR 2461836 | Zbl 1190.34037
[9] Opial, Z.: Nouvelles remarques sur l’équation différentielle $u^{\prime \prime }+ a(t) u=0$. Ann. Polon. Math. 6 (1959), 75–81. MR 0104864 | Zbl 0085.07003
[10] Trench, W. F.: On the asymptotic behavior of solutions of second order linear differential equations. Proc. Amer. Math. Soc. 14 (1963), 12–14. DOI 10.1090/S0002-9939-1963-0142844-7 | MR 0142844
Partner of
EuDML logo