Previous |  Up |  Next

Article

Keywords:
Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group
Summary:
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb R^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline wz)^{-1}$ for the Möbius loop multiplication in the unit complex disk).
References:
[1] Ahlfors L.V.: Möbius transformations and Clifford numbers. in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73. MR 0780036 | Zbl 0569.30040
[2] Foguel T., Ungar A.A.: The involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3 (2000), 27–46. DOI 10.1515/jgth.2000.003 | MR 1736515
[3] Glauberman G.: On loops of odd order I. J. Algebra 1 (1964), 374–396. DOI 10.1016/0021-8693(64)90017-1 | MR 0175991
[4] Glauberman G.: On loops of odd order II. J. Algebra 8 (1968), 393–414. DOI 10.1016/0021-8693(68)90050-1 | MR 0222198 | Zbl 0155.03901
[5] Karzel H.: Recent developments on absolute geometries and algebraization by $K$-loops. Discrete Mahematics 208/209 (1999), 387–409. DOI 10.1016/S0012-365X(99)00085-0 | MR 1725545 | Zbl 0941.51002
[6] Kiechle H.: Theory of $K$-Loops. Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. DOI 10.1007/b83276 | MR 1899153 | Zbl 0997.20059
[7] Kinyon M.: Global left loop structures on spheres. Comment. Math. Univ. Carolin. 41 (2000), 325–346. MR 1780875 | Zbl 1041.20044
[8] Kinyon M., Jones O.: Loops and semidirect products. Comm. Algebra 28 (2000), 4137–4164. DOI 10.1080/00927870008827079 | MR 1772003 | Zbl 0974.20049
[9] Kreuzer A.: Beispiele endlicher und unendlicher $K$-loops. Results Math. 23 (1993), 355–362. DOI 10.1007/BF03322307 | MR 1215220 | Zbl 0788.20036
[10] Karzel H., Wefelscheid H.: Groups with an involutory antiautomorphism and $K$-loops; application to space-time-world and hyperbolic geometry. Results Math. 23 (1993), 338–354. DOI 10.1007/BF03322306 | MR 1215219 | Zbl 0788.20034
[11] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing Co., Hackensack, NJ, 2008. MR 2169236 | Zbl 1147.83004
[12] Vahlen K.Th.: Über Bewegungen und komplexe Zahlen. Math. Ann. 55 (1902), p. 585. DOI 10.1007/BF01450354 | MR 1511164
[13] Waterman P.L.: Möbius transformations in several dimensions. Advances in Math. 101 (1993), 87–113. DOI 10.1006/aima.1993.1043 | MR 1239454 | Zbl 0793.15019
Partner of
EuDML logo