Article
Keywords:
Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group
Summary:
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb R^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline wz)^{-1}$ for the Möbius loop multiplication in the unit complex disk).
References:
[1] Ahlfors L.V.:
Möbius transformations and Clifford numbers. in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73.
MR 0780036 |
Zbl 0569.30040
[2] Foguel T., Ungar A.A.:
The involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3 (2000), 27–46.
DOI 10.1515/jgth.2000.003 |
MR 1736515
[7] Kinyon M.:
Global left loop structures on spheres. Comment. Math. Univ. Carolin. 41 (2000), 325–346.
MR 1780875 |
Zbl 1041.20044
[10] Karzel H., Wefelscheid H.:
Groups with an involutory antiautomorphism and $K$-loops; application to space-time-world and hyperbolic geometry. Results Math. 23 (1993), 338–354.
DOI 10.1007/BF03322306 |
MR 1215219 |
Zbl 0788.20034
[11] Ungar A.A.:
Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing Co., Hackensack, NJ, 2008.
MR 2169236 |
Zbl 1147.83004