Previous |  Up |  Next

Article

Keywords:
monotone measure; monotonicity formula
Summary:
We prove that the 1-dimensional Hausdorff measure restricted to a simple real analytic curve $\gamma: \mathbb R \to \mathbb R^N$, $N \ge 2$, is locally 1-monotone.
References:
[1] Černý R.: Local monotonicity of measures supported by graphs of convex functions. Publ. Mat. 48 (2004), 369–380. MR 2091010
[2] Černý R.: Local monotonicity of Hausdorff measures restricted to curves in $\mathbb R^n$. Comment. Math. Univ. Carolin. 50 (2009), 89–101. MR 2562806
[3] Kolář J.: Non-regular tangential behavior of a monotone measure. Bull. London Math. Soc. 38 (2006), 657–666. DOI 10.1112/S0024609306018637 | MR 2250758
[4] Preiss D.: Geometry of measures in $\mathbb R^n$: Distribution, rectifiability and densities. Ann. Math. 125 (1987), 537–643. DOI 10.2307/1971410 | MR 0890162
[5] Simon L.: Lectures on Geometric Measure Theory. Proc. C.M.A., Australian National University Vol. 3, 1983. MR 0756417 | Zbl 0546.49019
Partner of
EuDML logo