Article
Keywords:
factorization of finite abelian groups; periodic subset; cyclic subset; Hajós's theorem
Summary:
It is proved that if a finite abelian group is factored into a direct product of lacunary cyclic subsets, then at least one of the factors must be periodic. This result generalizes Hajós's factorization theorem.
References:
[1] Corrádi K., Szabó S.:
A Hajós type result on factoring finite abelian groups by subsets. Math. Pannon. 5 (1994), 275–280.
MR 1304856
[2] Hajós G.:
Über einfache und mehrfache Bedeckung des $n$-dimensionalen Raumes mit einem Würfelgitter. Math. Z. 47 (1942), 427–467.
DOI 10.1007/BF01180974 |
MR 0006425
[3] Sands A.D.:
A note on distorted cyclic subsets. Math. Pannon. 20 (2009), 123–127.
MR 2517716