Previous |  Up |  Next

Article

Keywords:
reflexive families of closed sets; closed set lattice; hyperspace; lower semicontinuous set-valued map
Summary:
For a topological space $X$, let $S(X)$ denote the set of all closed subsets in $X$, and let $C(X)$ denote the set of all continuous maps $f:X\to X$. A family $\mathcal A\subseteq S(X)$ is called reflexive if there exists ${\mathcal C}\subseteq C(X)$ such that $\mathcal A = \{A\in S(X) : f(A)\subseteq A$ for every $f\in {\mathcal C}\}$. Every reflexive family of closed sets in space $X$ forms a sub complete lattice of the lattice of all closed sets in $X$. In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed sets to be reflexive are obtained.
References:
[1] Engelking R.: General Topology. Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[2] Halmos P.R.: Ten problems in Hilbert space. Bull. Amer. Math. Soc. 76 (1970), 887–933. DOI 10.1090/S0002-9904-1970-12502-2 | MR 0270173 | Zbl 0213.39502
[3] Halmos P.R.: Reflexive lattices of subspaces. J. London Math. Soc. 4 (1971), 257–263. DOI 10.1112/jlms/s2-4.2.257 | MR 0288612 | Zbl 0231.47003
[4] Harrison K.J., Longstaff W.E.: Automorphic images of commutative subspace lattices. Proc. Amer. Math. Soc. 296 (1986), 217–228. DOI 10.1090/S0002-9947-1986-0837808-1 | MR 0837808 | Zbl 0616.46021
[5] Longstaff W.E.: Strongly reflexive subspace lattices. J. London Math. Soc. (2) 11 (1975), 491–498. DOI 10.1112/jlms/s2-11.4.491 | MR 0394233
[6] Longstaff W.E.: On lattices whose every realization on Hilbert space is reflexive. J. London Math. Soc. (2) 37 (1988), 499–508. DOI 10.1112/jlms/s2-37.3.499 | MR 0939125 | Zbl 0654.47025
[7] Longstaff W.E., Panaia O.: On the ranks of single elements of reflexive operator algebras. Proc. Amer. Math. Soc. (10) 125 (1997), 2875–2882. MR 1402872 | Zbl 0883.47024
[8] Michael E.: Continuous selections I. Ann. of Math. 63 (1956), 361–382. DOI 10.2307/1969615 | MR 0077107 | Zbl 0071.15902
[9] J. van Mill: Infinite-Dimensional Topology, Prerequisites and Introduction. North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989. MR 0977744 | Zbl 0663.57001
[10] Yang Z., Zhao D.: Reflexive families of closed sets. Fund. Math. 192 (2006), 111–120. DOI 10.4064/fm192-2-2 | MR 2283754 | Zbl 1111.47007
[11] Zhao D.: On reflexive subobject lattices and reflexive endomorphism algebras. Comment. Math. Univ. Carolin. 44 (2003), 23–32. MR 2045843 | Zbl 1101.18303
Partner of
EuDML logo