[1] Abdellaoui T., Heinich H.:
Sur la distance de deux lois dans le cas vectoriel. C.R. Acad. Sci. Paris Sér. I Math. 319 (1994), 397–400.
MR 1289319 |
Zbl 0808.60008
[2] Alberti G., Ambrosio L.:
A geometric approach to monotone functions in $\Bbb R^n$. Math. Z. (1999), 230 259–316.
MR 1676726
[3] Ambrosio L.:
Lecture notes on optimal transport problems. Mathematical Aspects of Evolving Interfaces (P. Colli and J.F. Rodrigues, Eds.), Lecture Notes in Mathematics, 1812, Springer, Berlin, 2003, pp. 1–52.
MR 2011032 |
Zbl 1047.35001
[4] Ambrosio L., Gigli N., Savaré G.:
Gradient Flows in Metric Spaces and in the Space of Probability Measures. Second Edition, Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel, 2008.
MR 2401600
[5] Ball J.M.:
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1978), 337–403.
DOI 10.1007/BF00279992 |
MR 0475169
[6] Ball J.M.:
Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315–328.
MR 0616782 |
Zbl 0478.46032
[7] Bolton P., Dewatripont M.: Contract Theory. The MIT Press Cambridge (2005).
[8] Brenier Y.:
Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808.
MR 0923203 |
Zbl 0652.26017
[9] Brenier Y.:
Extended Monge-Kantorovich theory. Optimal Transportation and Applications (L.A. Caffarelli and S. Salsa, Eds.), Lecture Notes in Mathematics, 1813, Springer, Berlin, 2003, pp. 91–121.
MR 2006306 |
Zbl 1064.49036
[10] Brezis H.:
Analyse Fonctionelle. Masson Paris (1983).
MR 0697382
[11] Cannarsa P., Sinestrari C.:
Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004.
MR 2041617 |
Zbl 1095.49003
[15] Carlier G., Jimenez Ch.:
On Monge's problem for Bregman-like cost function. J. Convex Anal. (2007), 14 647–656.
MR 2341308
[18] Evans L.C., Gangbo W.:
Differential equation methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc 137 (1999), 653.
MR 1464149
[19] Fathi A., Figalli A.: Optimal transportation on non-compact manifold. Israel J. Math., to appear.
[20] Gangbo W., McCann R.J.:
Optimal maps in Monge's mass transport problem. C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1653–1658.
MR 1367824 |
Zbl 0858.49002
[22] Giaquinta M., Modica G., Souček J.:
Cartesian Currents in the Calculus of Variations. I Springer Berlin (1998).
MR 1645086
[23] Kantorovich L.V.: On a problem of Monge. Uspekhi Mat. Nauk SSSR 3 (1948), 225–226.
[25] Laffont J.J., Matimort D.: The Theory of Incentives: The Agent-Principal Model. Princeton University Press Princeton (2001).
[28] Monge G.: Memoire sur la Theorie des Déblais et des Remblais. Histoire de l'Acad. des Science de Paris, 1781.
[29] Müller S., Qi T., Yan B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré 177 (1996), 113–161.
[31] Rachev S.T., Rüschendorf L.R.: Mass Transportation Problem. Springer Berlin (1998).
[32] Repovš D., Semenov P.V.:
Continuous Selections of Multivalued Mappings. Kluver Academic Dordrecht (1998).
MR 1659914
[34] Rüschendorf L., Uckelmann L.:
Numerical and analytical results for the transportation problem of Monge-Kantorovich. Metrika 51 3 (2000), 245–258.
DOI 10.1007/s001840000052 |
MR 1795372
[35] Sudakov V.N.:
Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141 (1979), 1–178.
MR 0530375
[37] Trudinger N.S., Wang X.J.:
On the second boundary problem for Monge-Ampère type equations and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 1 143–174; archived online at arxiv.org/abs/math.AP/0601086.
MR 2512204
[38] van der Putten R.:
Sul lemma dei valori critici e la formula della coarea. Boll. U.M.I. (7) 6-B (1992), 561–578.
MR 1191953
[39] Villani C.:
Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften, 338, Springer, Berlin, 2009; archived online at www.umpa.ens-lyon.fr/$\sim ${\tt cvillani/Cedrif/B07D.StFlour.pdf}.
MR 2459454 |
Zbl 1156.53003
[40] Ziemer W.P.:
Weakly Differentiable Functions. Graduate Texts in Mathematics, 120, Springer, New York, 1989.
MR 1014685 |
Zbl 0692.46022