[1] S. Altschuler and M. A. Grayson:
Shortening space curves and flow through singularities. J. Differential Geom. 35 (1992), 283–298.
MR 1158337
[2] J. W. Barrett, H. Garcke, and R. Nurnberg:
On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comp. 29 (2007), 1006–1041.
MR 2318696
[3] M. Beneš: Phase field model of microstructure growth in solidification of pure substances. Acta Math. Univ. Comenian. 70 (2001), 123–151.
[4] M. Beneš:
Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221.
MR 1825658
[5] M. Beneš, K. Mikula, T. Oberhuber, and D. Ševčovič:
Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves. Computing and Visualization in Science 12 (2009), No. 6, 307–317.
MR 2520782
[6] K. Deckelnick and G. Dziuk:
Mean curvature flow and related topics. Frontiers in Numerical Analysis (2002), 63–108.
MR 2006966
[7] G. Dziuk, A. Schmidt, A. Brillard, and C. Bandle: Course on Mean Curvature Flow. Manuscript 75 pp., Freiburg 1994.
[8] F. Kroupa: Long-range elastic field of semi-infinite dislocation dipole and of dislocation jog. Phys. Status Solidi 9 (1965), 27–32.
[9] K. Mikula and D. Ševčovič:
Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 5, 1473–1501.
MR 1824511
[10] K. Mikula and D. Ševčovič:
Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput. Visualization Sci. 6 (2004), 4, 211–225.
MR 2071441
[11] V. Minárik and J. Kratochvíl:
Dislocation dynamics – analytical description of the interaction force between dipolar loops. Kybernetika 43 (2007), 841–854.
MR 2388398
[12] V. Minárik, J. Kratochvíl, and K. Mikula: Numerical Simulation of dislocation dynamics by means of parametric approach. In: Proc. Czech–Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague 2005, pp. 128–138.
[13] V. Minárik, J. Kratochvíl, K. Mikula, and M. Beneš: Numerical simulation of dislocation dynamics. In: Numerical Mathematics and Advanced Applications – ENUMATH 2003 (M. Feistauer, V. Dolejší, P. Knobloch, and K. Najzar, eds.), Springer–Verlag, New York 2004, pp. 631–641.
[14] T. Mura: Micromechanics of Defects in Solids. Springer–Verlag, Berlin 1987.
[15] T. Oberhuber:
Finite difference scheme for the Willmore flow of graphs. Kybernetika 43 (2007), 855–867.
MR 2388399 |
Zbl 1140.53032
[16] S. Osher and R. P. Fedkiw:
Level Set Methods and Dynamic Implicit Surfaces. Springer–Verlag, New York 2003.
MR 1939127
[17] P. Pauš: Numerical simulation of dislocation dynamics. In: Proceedings of Slovak–Austrian Congress, Magia (M. Vajsáblová and P. Struk, eds.), Bratislava, pp. 45–52.
[18] P. Pauš and M. Beneš: Topological changes for parametric mean curvature flow. In: Proc. Algoritmy Conference (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Podbanské 2009, pp. 176–184.
[19] P. Pauš and M. Beneš: Comparison of methods for mean curvature flow. (In preparation.)
[20] J. A. Sethian:
Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge 1999.
MR 1700751 |
Zbl 0973.76003
[22]
cl39.pdf, arXiv:0711.2568, 2007.