Previous |  Up |  Next

Article

Keywords:
nonlinear system; observer; chaos shift keying; generalized Lorenz system; synchronization; anti-synchronization; secure communication
Summary:
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented and tested using the so-called generalized Lorenz system (GLS) family making advantage of its special parametrization. Such an implementation relies on the parameter dependent synchronization of several identical copies of the GLS obtained through the observer-based design for nonlinear systems. The purpose of this paper is to study and compare two different methods for the anti-synchronization detection, including further underlying theoretical study of the GLS. Resulting encryption schemes are also compared and analyzed with respect to both the encryption redundancy and the encryption security. Numerical experiments illustrate the results.
References:
[1] J. Alvarez, H. Puebla, and I. Cervantes: Stability of observer-based chaotic communication for a class of Lur’e systems. Internat. J. Bifurcation Chaos 7 (2002), 1605–1618.
[2] G. Alvarez and S. Li: Cryptographic requirements for chaotic secure communications. arXiv: nlin. CD/0311039, 2003.
[3] T. L. Carroll and L. M. Pecora: Cascading synchronized chaotic systems. Physica D 67 (1993), 126–140.
[4] S. Čelikovský: Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization. Kybernetika 40 (2004), 6, 649–664. MR 2120388
[5] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifurcation Chaos 12 (2002), 1789–1812. MR 1927413
[6] S. Čelikovský and G. Chen: Secure synchronization of chaotic systems from a nonlinear observer approach. IEEE Trans. Automat. Control 50 (2005), 76–82. MR 2110810
[7] S. Čelikovský, V. Lynnyk, and M. Šebek: Anti-synchronization chaos shift keying method based on generalized Lorenz system. In: Proc. The 1st IFAC Conference on Analysis and Control of Chaotic Systems. CHAOS’06, 2006, pp. 333–338.
[8] S. Čelikovský, V. Lynnyk, and M. Šebek: Observer-based chaos sychronization in the generalized chaotic Lorenz systems and its application to secure encryption. In: Proc. The 45th IEEE Conference on Decision and Control, 2006, pp. 3783–3788.
[9] S. Čelikovský and V. Lynnyk: Anti-synchronization chaos shift keying method: Error derivative detection improvement. In: Proc. The 2st IFAC Conference on Analysis and Control of Chaotic Systems. CHAOS ’09, pp. 1-6.
[10] S. Čelikovský and A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424.
[11] K. M. Cuomo and A. V. Oppenheim: Circuit implementation of synchronized chaos with application to communications. Physical Rev. Lett. 71 (1993),1, 65–68.
[12] K. Cuomo, A. Oppenheim, and S. Strogatz: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits and Systems II 40 (1993), 626–633.
[13] F. Dachselt and W. Schwartz: Chaos and cryptography. IEEE Trans. Circuits and Systems I 48 (2001), 1498–1509. MR 1873100
[14] H. Dedieu, M. P. Kennedy, and M. Hasler: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuit. IEEE Trans. Circuits and Systems II 40 (1993), 634–642.
[15] L. Gamez-Guzman, R. M. Cruz-Hernandez, Lopez-Gutierrez, and E. E. Garcia-Guerrero: Synchronization of Chua’s circuits with multi-scroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation 14 (2009), 6, 2765–2775.
[16] J. M. V. Grzybowski, M. Rafikov, and J. M. Balthazar: Synchronization of the unified chaotic system and application in secure communication. Communications in Nonlinear Science and Numerical Simulation 14 (2009), 6, 2793–2806. MR 2483887
[17] L. Kocarev and U. Parlitz: General approach for chaotic synchronization with applications to communications. Phys. Rev. Lett. 74 (1995), 25, 5028–5031.
[18] L. Kocarev: Chaos-based cryptography: a brief overview. Circuits Systems Magazine 1 (2001), 6–21.
[19] A. A. Koronovskii, O. I. Moskalenko, P. V. Popov, and A. E. Hramov: Method for secure data transmission based on generalized synchronization. BRAS: Physics. 72 (2008), 1, 131–135.
[20] K. Lian and P. Liu: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits Systems I 47 (2000), 1418–1424. MR 1803664
[21] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel: Encoding messages using chaotic synchronization. Phys. Rev. E. 53 (1996), 4351–4361.
[22] U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang: Transmission of digital signals by chaotic synchronization. Internat. J. Bifur. Chaos 2 (1992), 973–977.
[23] R. Schmitz: Use of chaotic dynamical systems in cryptography. J. Franklin Inst. 338 (2001), 4, 429–441. MR 1833969 | Zbl 0979.94038
[24] A. Vaněček and S. Čelikovský: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. MR 1481725
[25] A. R. Volkovskii and N. Rulkov: Synchronouns chaotic response of a nonlinear oscillating system as a principle for the detection of the information component of chaos. Tech. Phys. Lett. 19 (1993), 97–99.
Partner of
EuDML logo