[1] C. Abdallah, M. Ariola, and V. Koltchinskii:
Statistical-learning control of multiple-delay systems with applications to ATM Networks. Kybernetika 37 (2001), 355–365.
MR 1859091
[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan:
Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, Philadelphia 1994.
MR 1284712
[3] J. Chen:
On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40 (1995), 1087–1093.
MR 1345968 |
Zbl 0991.93554
[4] M. A. Cruz and J. K. Hale:
Stability of functional differential equations of neutral type. J. Differential Equations 7 (1970), 334–355.
MR 0257516
[5] L. E. El’sgol’ts and S. B. Norkin:
Introduction to the Theory and Applications of Differential Equations with Derivating Arguments (translated from Russian). (Mathematics in Science and Engineering, Vol. 105.) Academic Press, New York 1973.
MR 0352647
[6] M. Fliess and H. Mounier:
On a class of linear delay systems often arising in practice. Kybernetika 37 (2001), 295–308.
MR 1859087
[7] E. Fridman:
Descriptor discretized Lyapunov functional method: analysis and design. IEEE Trans. Automat. Control 51 (2006), 890–897.
MR 2232620
[8] K. Gopalsamy:
Stability and Oscillations in Delay Differential Equations of Population Dynamics (Mathematics and Its Applications Series 74). Kluwer Academic Publishers, Dordrecht 1992.
MR 1163190
[9] K. Gu and S. Niculescu:
Additional dynamics in transformed time-delay systems. Proc. IEEE Trans. Automat. Control 45 (2000), 572–575.
MR 1762880
[10] J. K. Hale and M. A. Cruz:
Existence, uniqueness and continuous dependence for hereditary systems. Ann. Mat. Pura Appl. 85 (1970), 63–82.
MR 0262633
[11] J. K. Hale and S. M. Verduyn Lunel:
Introduction to Functional Differential Equations. Springer–Verlag, Berlin 1993.
MR 1243878
[12] J. K. Hale and M. A. Cruz:
Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5–23.
MR 1899001
[13] D. Ivanescu, S. Niculescu, L. Dugard, J. M. Dion, and E. I. Verriest:
On delay dependent stability for linear neutral systems. Automatica 39 (2003), 255–261.
MR 2136946
[14] V. L. Kharitonov: Robust stability analysis of time-delay systems: a survey. In: IFAC Conference System Structure and Control, Nantes 1998, pp. 1–12.
[15] V. B. Kolmanovskii and A. D. Myshkis:
Introduction to The Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999.
MR 1680144
[16] V. B. Kolmanovskii and V. R. Nosov:
On the stability of first order nonlinear equations of neutral type. Prikl. Mat. Mekh. 34 (1970), 587–594.
MR 0350159
[17] V. B. Kolmanovskii and J. P. Richard: Stability of some systems with distributed delays. JESA, Special Issue on Analysis and Control of Time-delay Systems 31 (1997), 13–18.
[18] V. B. Kolmanovskii and J. P. Richard:
Stability of some linear systems with delays. IEEE Trans. Automat. Control 44 (1999), 984–989.
MR 1690541
[19] Y. Kuang: Delay-Differential Equation with Applications in Population Dynamics. Academic Press, New York 1993.
[20] H. Li, S.-M. Zhong, and H. B. Li:
Some new simple stability criteria of linear neutral systems with a single delay. J. Comput. Appl. Math. 200 (2007), 441–447.
MR 2276843
[21] C.-H. Lien: Asymptotic criterion for neutral systems with multiple time delays. IEE Elec. Lett. 35 (1999), 850–851.
[22] S. I. Niculescu and B. Brogliato: Force measurement time-delays and contact instability phenomenon. European J. Control 5 (1999), 279–289.
[23] S. I. Niculescu:
On delay-dependent stability under model transformations of some neutral linear systems. Internat. J. Control 74 (2001), 609–617.
MR 1827547 |
Zbl 1047.34088
[24] S. I. Niculescu:
On robust stability of neutral systems. Kybernetika 37 (2001), 253–263.
MR 1859084
[25] S. I. Niculescu, E. I.Verriest, L. Dugard, and J.-M. Dion:
Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 1–71.
MR 1482571
[26] P. Ngoc and B. Lee:
Some sufficient conditions for exponential stability of linear neutral functional differential equations. Appl. Math. Comput. 170 (2005), 515–530.
MR 2177558
[27] J. P. Richard:
Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 1667–1694.
MR 2141765 |
Zbl 1145.93302
[28] S. A. Rodriguez, J. M. Dion and L. Dugard: Robust stability analysis of neutral systems under model transformation. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1850–1855.
[29] S.A. Rodriguez, J.M. Dion and L. Dugard:
Stability of neutral time delay systems: A survey of some results. In: Advances in Automatic Control (Mihail Voicu ed.), Kluwer Academic Publishers, Boston 2003, pp. 315–336.
MR 2058095
[30] S. A. Rodriguez, J. M. Dion, and L. Dugard:
Robust delay-dependent stability analysis of neutral systems. In: Advances in Time-Delay Systems Vol. 38 (S. Niculescu and K. Gu, eds.), Springer–Verlag, Berlin 2004, pp. 269–284.
MR 2087200
[31] E. I. Verriest and S. I. Niculescu:
Delay-independent stability of LNS: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 92–100.
MR 1482573