[1]
Automatic Differentiation of Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia 1992.
MR 1143784 |
Zbl 0747.00030
[2]
Automatic Differentiation: Applications, Theory, and Implementations. Springer–Verlag, Berlin 2005.
Zbl 1084.65002
[3]
Computational Differentiation – Techniques, Applications, and Tools. SIAM, Philadelphia 1996.
MR 1431037 |
Zbl 0857.00033
[4] R. Griesse and A. Walther:
Evaluating gradients in optimal control – Continuous adjoints versus automatic differentiation. J. Optim. Theory Appl. 122 (2004), 1, 63–86.
MR 2092472
[5] A. Griewank:
Evaluation Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia 2000.
MR 1753583
[6] A. Griewank and A. Walther: Introduction to automatic differentiation. PAMM 2 (2003), 45–49.
[7] J. Hartman: Realizace metod pro automatické derivování (Implementation of Methods for Automatic Differentiation). Diploma Thesis. Faculty of Mathematics and Physics, Charles University, Prague 2001.
[8] J. Hartman and L. Lukšan: Automatické derivování v systému UFO (Automatic Differentiation in System UFO). Technical Report V-1002. ICS AS CR, Prague 2007.
[9] J. Hartman and J. Zítko: Principy automatického derivování (Principles of Automatic Differentiation). Technical Report, Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Prague 2006.
[10] L. Lukšan, M. Tůma, J. Hartman, J. Vlček, N. Ramešová, M. Šiška, and C. Matonoha: UFO 2006 – Interactive System for Universal Functional Optimization. Technical Report V-977. ICS AS CR, Prague 2006.
[11] A. Verma: Structured Automatic Differentiation. Ph.D. Thesis, Cornell University, 1988.
[12] A. Walther, A. Griewank, and O. Vogel: ADOL-C: Automatic differentiation using operator overloading in C++. PAMM 2 (2003), 41–44.