[1] C. Alsina, M. J. Frank, and B. Schweizer:
Associative Functions. Triangular Norms and Copulas. World Scientific, Hackensack, NJ 2006.
MR 2222258
[2] E. Alvoni, F. Durante, P.-L. Papini, and C. Sempi: Different types of convexity and concavity for copulas. In: New Dimensions in Fuzzy Logic and related Technologies – Proc. 5th EUSFLAT Conference (M. Štěpnička, V. Novák, and U. Bodenhofer, eds.), Volume 1, University of Ostrava 2007, pp. 185–189.
[3] E. Alvoni and P. L. Papini:
Quasi-concave copulas, asymmetry and transformations. Comment. Math. Univ. Carolin. 48 (2007), 311–319.
MR 2338099
[4] E. Alvoni, P.-L. Papini, and F. Spizzichino:
On a class of transformations of copulas and quasi-copulas. Fuzzy Sets and Systems 160 (2009), 334–343.
MR 2473107
[5] P. Capérà and C. Genest:
Spearman’s $\rho $ is larger than Kendall’s $\tau $ for positively dependent random variables. J. Nonparametr. Statist. 2 (1993), 183–194.
MR 1256381
[6] B. De Baets, H. De Meyer, and R. Mesiar:
Asymmetric semilinear copulas. Kybernetika 43 (2007), 221–233.
MR 2343397
[7] F. Durante, E. P. Klement, C. Sempi, and M. Úbeda-Flores:
Measures of non-exchangeability for bivariate random vectors. Statist. Papers (2009), to appear (doi:10.1007/s00362-008-0153-0).
MR 2679341
[8] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi:
Copulas with given values on a horizontal and a vertical section. Kybernetika 43 (2007), 209–220.
MR 2343396
[9] F. Durante, R. Mesiar, P.-L. Papini, and C. Sempi:
2-increasing binary aggregation operators. Inform. Sci. 177 (2007), 111–129.
MR 2272737
[10] F. Durante and P.-L. Papini:
A weakening of Schur-concavity for copulas. Fuzzy Sets and Systems 158 (2007), 1378–1383.
MR 2321982
[11] F. Durante and P.-L. Papini:
Non-exchangeability of negatively dependent random variables. Metrika (2009), to appear (doi:10.1007/s00184-008-0207-2).
MR 2602184
[12] F. Durante, S. Saminger-Platz, and P. Sarkoci:
Rectangular patchwork for bivariate copulas and tail dependence. Comm. Statist. Theory Methods 38 (2009), 2515–2527.
MR 2596930
[13] F. Durante and C. Sempi:
Copulæ and Schur-concavity. Internat. Math. J. 3 (2003), 893–905.
MR 1990502
[14] F. Durante and C. Sempi:
Copula and semicopula transforms. Internat. J. Math. Math. Sci. 2005 (2005), 645–655.
MR 2172400
[15] F. Durante and C. Sempi:
On the characterization of a class of binary operations on bivariate distribution functions. Publ. Math. Debrecen 69 (2006), 47–63.
MR 2228476
[17] E. P. Klement and A. Kolesárová:
Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section. Monatsh. Math. 152 (2007), 151–167.
MR 2346431
[18] E. P. Klement, A. Kolesárová, R. Mesiar, and A. Stupňanová:
Lipschitz continuity of discrete universal integrals based on copulas. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems (to appear).
MR 2654366
[19] E. P. Klement and R. Mesiar:
How non-symmetric can a copula be? Comment. Math. Univ. Carolin. 47 (2006), 141–148.
MR 2223973
[20] E. P. Klement, R. Mesiar, and E. Pap:
Transformations of copulas. Kybernetika 41 (2005), 425–434.
MR 2180355
[21] M. Marinacci and L. Montrucchio:
Ultramodular functions. Math. Oper. Res. 30 (2005), 311–332.
MR 2142035
[22] A. W. Marshall and I. Olkin:
Inequalities: Theory of Majorization and its Applications. Academic Press, New York 1979.
MR 0552278
[23] A. J. Mc Neil and J. Nešlehová:
Multivariate Archimedean copulas, d-monotone functions and $\ell _1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059–3097.
MR 2541455
[24] A. J. McNeil, R. Frey, and P. Embrechts:
Quantitative Risk Management. Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ 2005.
MR 2175089
[25] P. M. Morillas:
A method to obtain new copulas from a given one. Metrika 61 (2005), 169–184.
MR 2159414 |
Zbl 1079.62056
[28] G. Salvadori, C. De Michele, N. T. Kottegoda, and R. Rosso: Extremes in Nature. An Approach Using Copulas. Springer, Dordrecht 2007.
[29] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. Dover Publications, Mineola, N.Y. 2006.
[30] A. Sklar:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231.
MR 0125600
[31] A. Sklar:
Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460.
MR 0345164