[1] E. G. Beltrametti and G. Cassinelli:
The Logic of Quantum Mechanics. Addison-Wesley, Reading, MA 1981.
MR 0635780
[2] C. C. Chang:
Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490.
MR 0094302 |
Zbl 0084.00704
[3] F. Chovanec and F. Kôpka:
Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583.
MR 1790895
[4] D. J. Foulis and M. K. Bennett:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346.
MR 1304942
[5] R. J. Greechie, D. J. Foulis, and S. Pulmannová:
The center of an effect algebra. Order 12 (1995), 91–106.
MR 1336539
[6] S. P. Gudder:
Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30.
MR 1655076 |
Zbl 0939.03073
[7] S. P. Gudder:
S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923.
MR 1624277 |
Zbl 0932.03072
[8] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[9] G. Jenča and S. Pulmannová:
Orthocomplete effect algebras. Proc. Amer. Math. Soc. 131 (2003), 2663–2671.
MR 1974321
[10] G. Kalmbach:
Orthomodular Lattices. Kluwer Academic Publishers, Dordrecht 1998.
Zbl 0554.06009
[11] M. Katětov:
Remarks on Boolean algebras. Colloq. Math. 11 (1951), 229–235.
MR 0049862
[12] F. Kôpka:
Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531.
MR 1353696
[13] K. Mosná: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/S, 3–6.
[14] V. Olejček:
An atomic MV-effect algebra with non-atomic center. Kybernetika 43 (2007), 343–346.
MR 2362723
[15] J. Paseka and Z. Riečanová:
Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528.
MR 2490192
[16] J. Paseka and Z. Riečanová:
Compactly generated de Morgan lattices, basic algebras and effect algebras. Internat. J. Theoret. Phys. (2009), doi:10.1007/s10773-009-0011-4.
MR 2738081
[17] S. Pulmannová and Z. Riečanová: Block-finite atomic orthomodular lattices. J. Pure Appl. Algebra 89 (1993), 295–304.
[18] Z. Riečanová:
Lattices and quantum logics with separated intervals, atomicity. Internat. J. Theoret. Phys. 37 (1998), 191–197.
MR 1637165
[19] Z. Riečanová:
Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158.
MR 1725293
[20] Z. Riečanová:
Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38(1999), 3209–3220.
MR 1764459
[21] Z. Riečanová:
Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452.
MR 1791464
[22] Z. Riečanová:
Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theoret. Phys. 39 (2000), 231–237.
MR 1762594
[23] Z. Riečanová:
Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532.
MR 1853730
[24] Z. Riečanová:
Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524.
MR 1932844
[25] Z. Riečanová:
Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259.
MR 1984337
[26] Z. Riečanová:
Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sests and Systems 136 (2003), 41–54.
MR 1978468
[27] Z. Riečanová:
Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423.
MR 2021221
[28] Z. Riečanová:
Modular atomic effect algebras and the existence of subadditive states. Kybernetika 40 (2004), 459–468.
MR 2102364
[29] Z. Riečanová:
Basic decomposition of elements and Jauch–Piron effect algebras. Fuzzy Sets and Systems 155 (2005), 138–149.
MR 2206659
[30] Z. Riečanová:
Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 143–150.
MR 2241781
[31] Z. Riečanová and Wu Junde:
States on sharply dominating effect algebras. Sci. China Ser. A: Mathematics 51 (2008), 907–914.
MR 2395393
[32] Z. Riečanová:
Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009), 529–534.
MR 2490193
[33] Z. Riečanová and J. Paseka: State smearing theorems and the existence of states on some atomic lattice effect algebras. J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.
[34] T. A. Sarymsakov, S. A. Ajupov, Z. Chadzhijev, and V. J. Chilin:
Ordered Algebras. (in Russian) FAN, Tashkent, 1983.
MR 0781349
[35] J. Schmidt:
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. Math. 7 (1956), 241–249.
MR 0084484