Previous |  Up |  Next

Article

Keywords:
multivariate density estimation; copula; maximum likelihood estimators; minimum distance estimators
Summary:
In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters.
References:
[1] X. Chen and Y. Fan: Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. Canad. J. Statist. 33 (2005), 389–414. MR 2193982
[2] X. Chen and Y. Fan: Estimation of copula-based semiparametric time series models. J. Econometrics 130 (2006), 307–335. MR 2211797
[3] X. Chen and Y. Fan, and V. Tsyrennikov: Efficient estimation of semiparametric multivariate copula models. J. Amer. Statist. Assoc. 101 (2006), 1228–1240. MR 2328309
[4] J.-D. Fermanian: Goodness-of-fit tests for copulas. J. Multivariate Anal. 95 (2005), 119–152. MR 2164126 | Zbl 1095.62052
[5] C. Genest, K. Ghoudi, and L.-P. Rivest: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995), 543–552. MR 1366280
[6] C. Genest, J.-F. Quessy, and B. Rémillard: Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand. J. Statist. 33 (2006), 337–366. MR 2279646
[7] C. Genest and L.-P. Rivest: Statistical inference procedures for bivariate Archimedian copulas. J. Amer. Statist. Assoc. 88 (1993), 1034–1043. MR 1242947
[8] C. Genest and B. J. M. Werker: Conditions for the asymptotic efficiency of an omnibus estimator of dependence estimators in copula models. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras et al., eds.), Kluwer, Dordrecht 2000, pp. 103–112. MR 2058984
[9] I. Gijbels and J. Mielniczuk: Estimating the density of a copula function. Comm. Statist. – Theory Methods 19 (1990), 445–464. MR 1067582
[10] P. Hall and N. Neumayer: Estimating a bivariate density when there are extra data on one or both components. Working Paper, 2006.
[11] C. Hess: Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. Ann. Statist. 24 (1996), 1298–1315. MR 1401851 | Zbl 0862.62029
[12] H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. MR 1462613 | Zbl 0990.62517
[13] H. Joe: Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivariate Anal. 94 (2005), 401–419. MR 2167922 | Zbl 1066.62061
[14] P. Lachout, E. Liebscher, and S. Vogel: Strong convergence of estimators as $\varepsilon _{n}$-minimisers of optimisation problems. Ann. Inst. Statist. Math. 57 (2005), 291–313. MR 2160652
[15] E. Liebscher: Semiparametric density estimators using copulas. Comm. Statist. – Theory Methods 34 (2005), 59–71. MR 2162520 | Zbl 1066.62046
[16] E. Liebscher: Construction of asymmetric multivariate copulas. J. Multivariate Anal. 99 (2008), 2234–2250. MR 2463386 | Zbl 1151.62043
[17] R. B. Nelsen: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999. MR 1653203 | Zbl 1152.62030
[18] D. Oakes: Multivariate Survival distributions. J. Nonparametric Statist. 3 (1994), 343–354. MR 1291555
[19] R. Serfling: Approximation Theorems of Mathematical Statistics. Wiley, New York 1980. MR 0595165 | Zbl 1001.62005
[20] J. H. Shih and T. A. Louis: Inferences on the association parameter in copula models for bivariate survival data. Biometrics 55 (1995), 1384–1399. MR 1381050
[21] A. Suzukawa, H. Imai, and Y. Sato: Kullback–Leibler information consistent estimation for censored data. Ann. Inst. Statist. Math. 53 (2001), 262–276. MR 1841135
[22] H. Tsukahara: Semiparametric estimation in copula models. Canad. J. Statist. 33 (2005), 357–375. MR 2193980 | Zbl 1077.62022
[23] W. Wang and M. T. Wells: Model selection and semiparametric inference for bivariate failure-time data. J. Amer. Statist. Assoc. 95 (2000), 62–76. MR 1803141
Partner of
EuDML logo