[1] A. N. Atassi and H. K. Khalil:
A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1672–1687.
MR 1709863
[2] A. N. Atassi and H. K. Khalil:
A separation principle for the control of a class of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 742–746.
MR 1833028
[3] D. Bestle and M. Zeitz:
Canonical form observer design for non-linear time-variable systems. Internat. J. Control 38 (1983), 419–431.
MR 0708425
[4] R. S. Bucy and P. D. Joseph:
Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York 1968.
MR 0267946
[5] V. Černý and J. Hrušák:
Non-linear observer design method based on dissipation normal form. Kybernetika 41 (2005), 59–74.
MR 2131125
[6] V. Černý and J. Hrušák:
Comparing frequency domain, optimal and asymptotic filtering: a tutorial. Internat. J. Control and Intelligent Systems 34 (2006), 136–142.
MR 2228286
[7] V. Černý, D. Mayer, and J. Hrušák: Generalized Tellegen principle and physical correctness of system representations. J. Systemics, Cybernetics and Informatics 4 (2006), 38–42.
[8] F. Esfandiari and H. K. Khalil:
Output feedback stabilization of fully linearizable systems. Internat. J. Control 56 (1992), 1007–1037.
MR 1187838
[9] J. P. Gauthier and G. Bornard:
Observability for any $u(t)$ of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981), 922–926.
MR 0635851
[10] M. S. Ghausi and K. R. Laker: Modern Filter Design. Prentice Hall, Englewood Cliffs, New Jersey 1981.
[11] P. Glendinning:
Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, New York 1994.
MR 1304054 |
Zbl 0808.34001
[12] A. Glumineau, C. H. Moog, and F. Plestan:
New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598–603.
MR 1385333
[13] R. Hermann and A. J. Krener:
Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728–740.
MR 0476017
[14] J. Hrušák: Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie. Mathematisches Forschungsinstitut, Stuttgart 1969.
[15] J. Hrušák and V. Černý: Non-linear and signal energy optimal asymptotic filter design. J. Systemics, Cybernetics and Informatics 1 (2003), 55–62.
[16] E. C. Ifeachor and B. W. Jervis: Digital Signal Processing: A Practical Approach. Addison Wesley, Wokingham 1993.
[17] A. H. Jazwinski:
Stochastic Processes and Filtering Theory. Academic Press, New York 1970.
Zbl 0203.50101
[18]
R. E. Kalman and J. E. Bertram: Control system analysis and design via the second method of Lyapunov: I. continuous-time systems, II. discrete-time systems. ASME J. Basic Engrg. 82 (1960), 371–393, 394–400.
MR 0157810
[19] R. E. Kalman and R. S. Bucy:
New results in linear filtering and prediction theory. ASME J. Basic Engrg. 83 (1961), 95–108.
MR 0234760
[20] H. Keller:
Non-linear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915–1930.
MR 0924264
[21] H. Kimura:
Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans. Circuits Systems 32 (1985), 1130–1139.
Zbl 0579.94024
[22] A. J. Krener and A. Isidori:
Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52.
MR 0713426
[23] A. J. Krener and W. Respondek:
Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216.
MR 0777456
[24] D. G. Luenberger: An introduction to observers. IEEE Trans. Automat. Control 16 (1971), 596–602.
[25] A. Muszynska:
Rotordynamics. Taylor & Francis, London 2005.
Zbl 1089.70001
[26] A. W. Oppenheim and R. W. Schafer: Digital Signal Processing. Prentice Hall, Englewood Cliffs, New Jersey 1975.
[27] M. R. Patel, F. Fallside, and P. C. Parks: A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions. IEEE Trans. Automat. Control 9 (1963), 319–322.
[28] P. Penfield, S. Spence, and S. Dunker:
Tellegen’s Theorem and Electrical Networks. MIT Press, Cambridge, Mass. 1970.
MR 0282747
[29] T. Ph. Proychev and R. L. Mishkov:
Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495–498.
MR 1211308
[31] H. R. Schwarz:
Ein Verfahren zur Stabilitätsfrage bei Matrizen Eigenwertproblemen. Z. Angew. Math. Phys. 7 (1956), 473–500.
MR 0083194 |
Zbl 0073.33901
[32] S. W. Smith: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego 1999.
[33] J. C. Willems:
Dissipative dynamical systems – Part I: General theory. Arch. Rational Mechanics and Analysis 45 (1972), 321–351.
MR 0527462
[34] M. Zeitz:
Observability canonical (phase-variable) form for non-linear time-variable systems. Internat. J. Control 15 (1984), 949–958.
MR 0763769 |
Zbl 0546.93011