[1] J. C. Bezdek:
Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York 1981.
MR 0631231 |
Zbl 0503.68069
[2]
CASC: Computational Aspects of Statistical Confidentiality, EU Project,
[4] J. Domingo-Ferrer and V. Torra: Disclosure control methods and information loss for microdata. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 91–110,
[5] J. Domingo-Ferrer and V. Torra: A quantitative comparison of disclosure control methods for microdata. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 111–133.
[6] G. Duncan, S. Fienberg, R. Krishnam, R. Padman, and S. Roehrig: Disclosure limitation methods and information loss for tabular data. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 135–166.
[7] G. Duncan, S. Keller-McNulty, and S. Stokes: Disclosure Risk vs. Data Utility: The R-U Confidentiality Map. Technical Report No. 121 of National Institute of Statistical Sciences 2001, www.niss.org.
[8] G. Duncan, S. Keller-McNulty, and S. Stokes: Database Security and Confidentiality: Examining Disclosure Risk vs. Data Utility Through the R-U Confidentiality Map. Technical Report No. 142 of National Institute of Statistical Sciences 2004, www.niss.org.
[9] Y. Hasegawa, Y. Endo, Y. Hamasuna, and S. Miyamoto: Fuzzy $c$-means for data with tolerance defined as hyper-rectangle. In: Proc. MDAI 2007 (Lecture Notes in Artificial Intelligence 4617), pp. 237–248.
[10] J. Lane, P. Heus, and T. Mulcahy:
Data access in a cyber world: Making use of cyberinfrastructure. Trans. Data Privacy 1 (2008), 2–16.
MR 2657177
[11] P. Medrano-Gracia, J. Pont-Tuset, J. Nin, and V. Muntés-Mulero: Ordered data set vectorization for linear regression on data privacy. In: Proc. MDAI 2007 (Lecture Notes in Artificial Intelligence 4617), Springer, Berlin 2007, pp. 361–372.
[12] S. Miyamoto and K. Umayahara: Methods in gard and fuzzy clustering. In: Soft Computing and Human-Centered Machines (Z.-Q. Liu and S. Miyamoto, eds.), Springer, Tokyo 2000, 85–129.
[13] S. Mukherjee, Z. Chen, and A. Gangopadhyay: A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms. The VLDB Journal 15 (2006), 293–315.
[14] R. Murata, Y. Endo, H. Haruyama, and S. Miyamoto: On fuzzy $c$-means for data with tolerance. J. Advanced Computational Intelligence and Intelligent Informatics 10 (2006), 5, 673–681.
[15] J. Nin, J. Herranz, and V. Torra: Rethinking rank swapping to decrease disclosure risk. Data and Knowledge Engrg. 64 (2008), 1, 346–364.
[16] A. Oganian and J. Domingo-Ferrer: On the complexity of optimal microaggregation for statistical disclosure control. Statistical J. United Nations Economic Commission for Europe 18 (2000), 4, 345–354.
[17] V. Torra and J. Domingo-Ferrer: Record linkage methods for multidatabase data mining. In: Information Fusion in Data Mining (V. Torra, ed.), Springer 2003, pp. 101–132.
[18] V. Torra and J. Nin: (2008) Record linkage for database integration using fuzzy integrals. Internat. J. Intel. Systems 23 (2008), 715–734.
[20] W. E. Yancey, W. E. Winkler, and R. H. Creecy:
Disclosure risk assessment in perturbative microdata protection. In: Inference Control in Statistical Databases 2002 (Lecture Notes in Computer Science 2316), Springer, Berlin 2003, pp. 135–152.
MR 1967902
[21] A. C. Yao:
Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Foundations of Computer Science, Chicago 1982, pp. 160–164.
MR 0780394