[1] M. S. Chiu and Y. Arkun:
A methodology for sequential design of robust decentralized control systems. Automatica 28 (1992), 997–1001.
MR 1179702
[2] M. Hovd and S. Skogestad: Improved independent design of robust decentralized controllers. In: 12th IFAC World Congress, Vol. 5, Sydney 1993, pp. 271–274.
[3] M. Hovd and S. Skogestad:
Sequential design of decentralized controllers. Automatica 30, (1994), 1601–1607.
MR 1299384
[4] A. İftar: Decentralized robust control nased on overlapping decompositions. In: 10th IFAC Symposium om Large Scale Systems, Osaka 2004, pp. 605–609.
[5] A. İftar: Decentralized robust control of large-scale time-delay systems. In: 17th IFAC World Congress, Seoul 2008, CD-ROM.
[6] A. İftar and U. Özgüner: Decentralized LQG/LTR controller design for interconnected systems. In: Proc. American Control Conference, Minneapolis 1987, pp. 1682–1687.
[7] A. İftar and U. Özgüner: Local LQG/LTR controller design for decentralized systems. IEEE Trans. Automat. Control AC-32 (1987), 926–930.
[8] K. H. Johansson:
Interaction bounds in multivariable control systems. Automatica 38 (2002), 1045–1051.
MR 2135100 |
Zbl 1018.93013
[9] A. Kozáková: Robust decentralized control of complex systems in the frequency domain. In: 2nd IFAC Workshop New Trends in Design of Control Systems, Elsevier Kidlington UK, 1998.
[10] A. Kozáková and V. Veselý: A frequency domain design technique for robust decentralized controllers. In: 16th IFAC World Congress, Prague 2005, Mo-E21-TO/6, CD-ROM.
[11] A. Kozáková and V. Veselý: Improved tuning technique for robust decentralized PID controllers. In: 11th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems Theory and Applications, Gdansk 2007, CD-ROM.
[12] A. Kozáková and V. Veselý: Robust decentralized controller design with additive affine-type uncertainty. Internat. J. Innovative Computing, Information and Control (IJICIC), 3 (2007), 5, 1109–1120.
[13] W. L. Luyben and A. Jutan: Simple method for tuning SISO controllers in multivariable system. Indust. Eng. Chem. Process Development 25 (1986), 654–660.
[14] A. G. J. MacFarlane and I. Postlethwaite:
The generalized Nyquist stability criterion and multivariable root loci. Internat. J. Control 25 (1977), 81–127.
MR 0439341
[16] J. J. Neymark: Dynamical Systems and Controlled Processes. Nauka, Moscow 1978 (in Russian).
[17] X. Qiang, C. Wen-Jian, and H. Ming: A practical decentralized auto-tuning method for TITO systems under closed-loop control. Internat. J. Innovative Computing, Information and Control (IJICIC) 2 (2006), 305–322.
[18] H. Schmidt and E. W. Jacobsen: Selecting control configurations for performance with independent design. Comput. Chem. Engrg. 27 (2003), 101–109.
[19] S. Skogestad and M. Morari:
Robust performance of decentralized control systems by independent designs. Automatica 25 (1989), 119–125.
MR 0986579
[20] S. Skogestad and I. Postlethwaite: Multivariable Feedback Control: Analysis and Design. Third edition. Wiley, Chichester – New York – Brisbane – Toronto – Singapore 1996.
[21] V. Veselý:
Large scale dynamic system stabilization using the principle of dominant subsystem approach. Kybernetika 29 (1993), 1, 48–61.
MR 1227741