Previous |  Up |  Next

Article

Keywords:
asymptotic density; density measure; finitely additive measure
Summary:
We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text{$\mathbb {N}$}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac{A(n)}{n}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text{$\mathbb {N}$}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.
References:
[1] Ašić, M. D., Adamović, D. D.: Limits points of sequences in metric spaces. Amer. Math. Monthly 77 (1970) 613–616 DOI 10.2307/2316738 | MR 0264599
[2] Balcar, B., Štěpánek, P.: Teorie množin. Academia, Praha, 1986 (in Czech) MR 0911270
[3] Banach, S.: Theory of Linear Operations. North Holland, Amsterdam, 1987 MR 0880204 | Zbl 0613.46001
[4] Bhaskara Rao, K. P. S., Bhaskara Rao, M.: Theory of Charges – A Study of Finitely Additive Measures. Academic Press, London–New York, 1983 MR 0751777 | Zbl 0516.28001
[5] Blass, A., Frankiewicz, R., Plebanek, G., Ryll-Nardzewski, C.: A note on extensions of asymptotic density. Proc. Amer. Math. Soc. 129 (11) (2001) 3313–3320 DOI 10.1090/S0002-9939-01-05941-X | MR 1845008 | Zbl 0992.28002
[6] Blümlinger, M.: Lévy group action and invariant measures on $\beta \mathbb {N}$. Trans. Amer. Math. Soc. 348 (12) (1996) 5087–5111 DOI 10.1090/S0002-9947-96-01779-5 | MR 1390970
[7] Buck, R. C.: The measure theoretic approach to density. Amer. J. Math. 68 (1946) 560–580 DOI 10.2307/2371785 | MR 0018196 | Zbl 0061.07503
[8] Campbell, D. E., Kelly, J. S.: Asymptotic density and social choice trade-offs. Math. Social Sci. 29 (1995) 181–194 DOI 10.1016/0165-4896(94)00772-Z | MR 1332695 | Zbl 0886.90008
[9] Fey, M.: May’s theorem with an infinite population. Social Choice and Welfare 23 (2004) 275–293 MR 2084902 | Zbl 1090.91020
[10] Fey, M.: Problems (Density measures). Tatra Mnt. Math. Publ. 31 (2005) 177–181 MR 2208785
[11] Fuchs, A., Giuliano Antonini, R.: Théorie générale des densités. Rend. Acc. Naz. delle Scienze detta dei XL, Mem. di Mat. 108 (1990) Vol. XI, fasc. 14, 253–294 MR 1106580 | Zbl 0726.60004
[12] Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton, 1960 MR 0116199 | Zbl 0093.30001
[13] Giuliano Antonini, R., Grekos, G., Mišík, L.: On weighted densities. Czechosl. Math. J. 57 (3) (2007) 947–962 DOI 10.1007/s10587-007-0087-z | MR 2356932 | Zbl 1195.11018
[14] Grekos, G.: On various definitions of density. (survey), Tatra Mt. Math. Publ. 31 (2005) 17–27 MR 2208784 | Zbl 1150.11339
[15] Grekos, G., Šalát, T., Tomanová, J.: Gaps and densities. Bull. Math. Soc. Sci. Math. Roum. 46 (3–4) (2003–2004) 121–141 MR 2094181
[16] Grekos, G., Volkmann, B.: On densities and gaps. J. Number Theory 26 (1987) 129–148 MR 0889380 | Zbl 0622.10044
[17] Halberstam, H., Roth, K. F.: Sequences. Springer-Verlag, New York, 1983 MR 0687978 | Zbl 0498.10001
[18] Howard, P., Rubin, J. E.: Consequences of the axiom of choice. Mathematical Surveys and Monographs. 59. Providence, RI: American Mathematical Society (AMS), 1998 MR 1637107 | Zbl 0947.03001
[19] Hrbacek, K., Jech, T.: Introduction to set theory. Marcel Dekker, New York, 1999 MR 1697766 | Zbl 1045.03521
[20] Johnson, B. E.: Separate continuity and measurability. Proc. Amer. Math. Soc. 20 (2) (1969) 420–422 DOI 10.1090/S0002-9939-1969-0236345-0 | MR 0236345 | Zbl 0181.14502
[21] Lauwers, L.: Intertemporal objective functions: strong Pareto versus anonymity. Mathematical Social Sciences 35 (1998) 37–55 DOI 10.1016/S0165-4896(97)00022-X | MR 1609016 | Zbl 0926.91015
[22] Maharam, D.: Finitely additive measures on the integers. Sankhya, Ser. A 38 (1976) 44–59 MR 0473132 | Zbl 0383.60008
[23] Pincus, D., Solovay, R. M.: Definability of measures and ultrafilters. The Journal of Symbolic Logic 42 (2) (1977) 179–190 DOI 10.2307/2272118 | MR 0480028 | Zbl 0384.03030
[24] Pólya, G.: Untersuchungen über Lücken und Singularitäten von Potenzreihen. Math. Zeit. 29 (1929) 549–640 DOI 10.1007/BF01180553
[25] Rajagopal, C. T.: Some limit theorems. Amer. J. Math. 70 (1) (1948) 157–166 DOI 10.2307/2371942 | MR 0023930 | Zbl 0041.18301
[26] Šalát, T., Tijdeman, R.: Asymptotic densities of sets of positive integers. Mathematica Slovaca 33 (1983) 199–207 MR 0699090
[27] Sleziak, M., Ziman, M.: Lévy group and density measures. J. Number Theory, 128 (12) (2008) 3005–3012 MR 2464850 | Zbl 1216.11010
[28] Tenenbaum, G.: Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995 MR 1342300 | Zbl 0880.11001
[29] Toma, V.: Densities and social choice trade-offs. Tatra Mt. Math. Publ. 31 (2005) 55–63 MR 2208787 | Zbl 1150.91333
[30] van Douwen, E. K.: Finitely additive measures on $\mathbb {N}$. Topology and its Applications 47 (1992) 223–268 MR 1192311
[31] Walker, R. C.: The Stone-Čech compactification. Springer-Verlag, Berlin, Heidelberg, New York, 1974 MR 0380698 | Zbl 0292.54001
Partner of
EuDML logo