Previous |  Up |  Next

Article

Keywords:
Manifold; linear connection; metric connection; pseudo-Riemannian geometry
Summary:
We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
References:
[1] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). MR 0861409
[2] Cocos, M.: A note on symmetric connections. J. Geom. Phys. 56 (2006), 337–343. MR 2171888 | Zbl 1091.53008
[3] do Carmo, M. P.: Riemannian Geometry. Birkhäuser, Boston–Basel–Berlin, 1992. MR 1138207 | Zbl 0752.53001
[4] Cheng, K. S, Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.
[5] Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. AMS 50 (1941), 71–128. MR 0004740 | Zbl 0025.18102
[6] Dodson, C. T. J., Poston, T.: Tensor Geometry. The Geometric Viewpoint and its Uses. Spriger, New York–Berlin–Heidelberg, 1991 (second editon). MR 1223091 | Zbl 0732.53002
[7] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[8] Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin–Heidelberg–New York, 2005. MR 2165400 | Zbl 1083.53001
[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991.
[10] Kolář, I., Slovák, J., Michor, P. W.: Natural Operations in Differential Geometry. Springer, Berlin–Heidelberg–New York, 1993. MR 1202431
[11] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. MR 0295250 | Zbl 0234.53024
[12] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle. Wiley, New York–London–Sydney, 1975. MR 0474046
[13] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic Mappings of Manifolds with Affine Connection. Palacký Univ. Publ., Olomouc, 2008. MR 2488821 | Zbl 1176.53004
[14] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, Cambridge, 1994. MR 1311248
[15] Petrov, A. Z.: Einstein Spaces. Moscow, 1961 (in Russian). MR 0141492
[16] Schmidt, B. G.: Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59. MR 0322726
[17] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Moscow, 1979 (in Russian). MR 0552022 | Zbl 0637.53020
[18] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19, 6 (1991), 529–532.
[19] Vanžurová, A.: Linear connections on two-manifolds and SODEs. Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332.
[20] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum (Brno) 44 (2008), 339–348. MR 2501581
[21] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Physica Debrecina 42 (2008), 39–48.
[22] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
[23] Wolf, J. A.: Spaces of Constant Curvature. Berkley, California, 1972. MR 0343213
Partner of
EuDML logo