[1] Boothby, W. M.:
An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon).
MR 0861409
[4] Cheng, K. S, Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.
[5] Douglas, J.:
Solution of the inverse problem of the calculus of variations. Trans. AMS 50 (1941), 71–128.
MR 0004740 |
Zbl 0025.18102
[6] Dodson, C. T. J., Poston, T.:
Tensor Geometry. The Geometric Viewpoint and its Uses. Spriger, New York–Berlin–Heidelberg, 1991 (second editon).
MR 1223091 |
Zbl 0732.53002
[7] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[8] Jost, J.:
Riemannian Geometry and Geometric Analysis. Springer, Berlin–Heidelberg–New York, 2005.
MR 2165400 |
Zbl 1083.53001
[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991.
[10] Kolář, I., Slovák, J., Michor, P. W.:
Natural Operations in Differential Geometry. Springer, Berlin–Heidelberg–New York, 1993.
MR 1202431
[12] Lovelock, D., Rund, H.:
Tensors, Differential Forms, and Variational Principle. Wiley, New York–London–Sydney, 1975.
MR 0474046
[13] Mikeš, J., Kiosak, V., Vanžurová, A.:
Geodesic Mappings of Manifolds with Affine Connection. Palacký Univ. Publ., Olomouc, 2008.
MR 2488821 |
Zbl 1176.53004
[14] Nomizu, K., Sasaki, T.:
Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, Cambridge, 1994.
MR 1311248
[15] Petrov, A. Z.:
Einstein Spaces. Moscow, 1961 (in Russian).
MR 0141492
[16] Schmidt, B. G.:
Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59.
MR 0322726
[18] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19, 6 (1991), 529–532.
[19] Vanžurová, A.: Linear connections on two-manifolds and SODEs. Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332.
[20] Vanžurová, A.:
Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum (Brno) 44 (2008), 339–348.
MR 2501581
[21] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Physica Debrecina 42 (2008), 39–48.
[22] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
[23] Wolf, J. A.:
Spaces of Constant Curvature. Berkley, California, 1972.
MR 0343213