[6] Boshernitzan M. D. :
Elementary proof of Furstenberg’s Diophantine result. Proc. Amer. Math. Soc. 122(1):67–70, 1994.
MR 1195714 |
Zbl 0815.11036
[10] Guivarc’h Y. :
Renewal theorems, products of random matrices, and toral endomorphisms. Potential theory in Matsue, 53–66, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006.
MR 2277822
[11] Guivarc’h Y., Starkov A. N. :
Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems, 24(3):767–802, 2004.
MR 2060998
[12] Guivarc’h Y., Urban R. :
Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171(1):33–66, 2005. Corrigendum to the paper: Studia Math. 183(2):195–196, 2007.
MR 2182271
[13] Hewitt E., Ross K. A. :
Abstract harmonic analysis. volume 1. Springer, Berlin, 1994.
Zbl 0837.43002
[14] Kra B. :
A generalization of Furstenberg’s Diophantine theorem. Proc. Amer. Math. Soc. 127(7):1951–1956, 1999.
MR 1487320
[16] Meiri D. :
Entropy and uniform distribution of orbits in $\mathbb T^d$. Israel J. Math. 105:155–183, 1998.
MR 1639747
[17] Meiri D., Peres Y. :
Bi-invariant sets and measures have integer Hausdorff dimension. Ergodic Theory Dynam. Systems 19(2):523–534, 1999.
MR 1685405
[18] Muchnik R. : Orbits of Zariski dense semigroups of $\mathrm {SL}(n,\mathbb Z)$. preprint
[19] Muchnik R. :
Semigroup actions on $\mathbb T^n$. Geometriae Dedicata, 110:1–47, 2005.
MR 2136018
[21] Urban R. :
Sequences of algebraic integers and density modulo $1$. J. Théor. Nombres Bordeaux 19(3):755–762, 2007.
DOI 10.5802/jtnb.610 |
MR 2388796
[23] Urban R.:
Sequences of algebraic numbers and density modulo $1$. Publ. Math. Debrecen, 72(1–2):141–154, 2008.
MR 2376865 |
Zbl 1164.11027
[24] Urban R.: On density modulo $1$ of some expressions containing algebraic numbers. submitted.