Previous |  Up |  Next

Article

Keywords:
Pell equation; binary sequences
Summary:
The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
References:
[1] Bennett M. A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., 498 (1998), 173–199. MR 1629862 | Zbl 1044.11011
[2] Binz J.: Elemente der Math. 35 (1980), 155.
[3] Hirsch M. D.: Additive sequences. Math. Mag., 50 (1977), 262. DOI 10.2307/2689536 | MR 1572238 | Zbl 0378.10006
[4] Kiss P.: On Common terms of linear recurrences. Acta Math. Acad. Sci. Hungar. 40 (1–2), (1982), 119–123. DOI 10.1007/BF01897310 | MR 0685998 | Zbl 0508.10006
[5] Kiss P.: Közös elemek másodrendű rekurzív sorozatokban. Az egri Ho Si Minh Tanárképző Főiskola füzetei XVI. (1982), 539–546.
[6] Kiss P.: Differences of the terms of linear recurrences. Studia Scientiarum Mathematicarum Hungarica 20 (1985), 285–293. MR 0886031 | Zbl 0628.10008
[7] Liptai K.: Közös elemek másodrendű rekurzív sorozatokban. Acta. Acad. Pead. Agriensis, Sect. Math., 21 (1994), 47–54.
[8] Mátyás F.: On common terms of second order linear recurrences. Mat. Sem. Not. (Kobe Univ. Jappan), 9 (1981), 89–97. MR 0633999
[9] Mignotte M.: Intersection des images de certains suites recurrentes lineaires. Theoretical Comput. Sci, 7 (1978), 117–122. DOI 10.1016/0304-3975(78)90043-9 | MR 0498356
[10] Mordell L. J.: Diophantine equations. Acad. Press, London, (1969), 270. MR 0249355 | Zbl 0188.34503
[11] Revuz G.: Equations deiphanties exponentielles. Bull. Soc. Math. France, Mém., 37 (1974), 139–156. MR 0369249
[12] Schlickewei H. P., Schmidt W. M.: Linear equations in members of recurrence sequences. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (1993), 219–246. MR 1233637 | Zbl 0803.11010
[13] Stewart C. L.: On divisors of terms of linear recurrence sequences. J. Reine Angew, Math., 333 (1982), 12–31. MR 0660783 | Zbl 0475.10009
Partner of
EuDML logo