Article
Keywords:
Witt ring; orders in number fields; bilinear forms on ideals
Summary:
We prove that there are infinitely many real quadratic number fields $K$ with the property that for infinitely many orders $\mathcal {O}$ in $K$ and for the maximal order $R$ in $K$ the natural homomorphism $\varphi :W\mathcal {O}\rightarrow WR$ of Witt rings is surjective.
Related articles:
References:
[1] Ciemała M.:
Natural homomorphisms of Witt rings of orders in algebraic number fields. Math. Slovaca 54 (2004), 473–477.
MR 2114618
[3] Ciemała M., Szymiczek K.: On injectivity of natural homomorphisms of Witt rings (submitted).
[4] Czogała A.:
Generators of the Witt groups of algebraic integers. Ann. Math. Siles. 12 (1998), 105–121.
MR 1673080
[5] Milnor J., Husemoller D.:
Symmetric bilinear forms. Springer-Verlag, Berlin - Heidelberg - New York 1973.
MR 0506372 |
Zbl 0292.10016
[7] Sierpiński W.:
Teoria Liczb. Monografie Matematyczne, Warszawa 1950.
MR 0047060