[1] Arias-Marco, T.:
Constant Jacobi osculating rank of $U(3)/(U(1) \times U(1) \times U(1))$ -Appendix-. ArXiv:0906.2890v1.
MR 2591679
[2] Arias-Marco, T.:
Study of homogeneous D’Atri spaces of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica$^{\scriptstyle {\bf ©}}$. thematica$^{\scriptstyle {\mathbf ©}}$, Universitat de València, Valencia, Spain, 2007, ISBN: 978-84-370-6838-1,
http://www.tdx.cat/TDX-0911108-110640
[3] Arias-Marco, T.:
Methods for solving the Jacobi equation. Constant osculating rank vs. constant Jacobi osculating rank. Differential Geometry Proceedings of the VIII International Colloquium, 2009, pp. 207–216.
MR 2523506 |
Zbl 1180.53042
[4] Arias-Marco, T., Naveira, A. M.:
Constant Jacobi osculating rank of a g.o. space. A method to obtain explicitly the Jacobi operator. Publ. Math. Debrecen 74 (2009), 135–157.
MR 2490427 |
Zbl 1199.53111
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Interscience, New York, 1996.
[8] Kowalski, O., Prüfer, F., Vanhecke, L.:
D’Atri spaces. Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284.
MR 1390318
[10] Naveira, A. M., Tarrío, A.:
A method for the resolution of the Jacobi equation $Y^{\prime \prime } + R Y = 0$ on the manifold $Sp(2)/SU(2)$. Monatsh. Math. 158 (3) (2008), 231–246.
DOI 10.1007/s00605-008-0551-3 |
Zbl 1152.53039