Previous |  Up |  Next

Article

Keywords:
chainable continuum; fixed point property; symmetric product; universal map
Summary:
We prove that the third symmetric product of a chainable continuum has the fixed point property.
References:
[1] Andersen R.S., Marjanović M.M., Schori R.M.: Symmetric products and higher-dimensional dunce hats. Topology Proc. 18 (1993), 7--17. MR 1305120
[2] Borsuk K., Ulam S.: Symmetric products of topological spaces. Bull. Amer. Math. Soc. 37 (1931), 875--882. DOI 10.1090/S0002-9904-1931-05290-3 | MR 1562283 | Zbl 0003.22402
[3] Ganea T.: Symmetrische Potenzen topologischer Räume. Math. Nachr. 11 (1954), 305--316. DOI 10.1002/mana.19540110409 | MR 0065919 | Zbl 0057.15003
[4] Higuera G., Illanes A.: Fixed point property on symmetric products. preprint.
[5] Illanes A.: Hyperspaces of continua. Open Problems in Topology II, Elliot Pearl (Ed.), pp. 279--288, Elsevier B.V., Amsterdam, 2007. Zbl 1064.54015
[6] Illanes A., Nadler S.B., Jr.: Hyperspaces, Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, Inc., New York, N.Y., 1999. MR 1670250 | Zbl 0933.54009
[7] Nadler S.B., Jr.: The fixed point property for continua. Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts] 30. Sociedad Matemática Mexicana, México, 2005. MR 2293917 | Zbl 1127.54001
[8] Oledski J.: On symmetric products. Fund. Math. 131 (1988), 185--190. MR 0978713
Partner of
EuDML logo