Previous |  Up |  Next

Article

Keywords:
orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state
Summary:
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
References:
[1] Beran L.: Orthomodular Lattices, Algebraic Approach. D. Reidel, Dordrecht, 1985. MR 0784029 | Zbl 0558.06008
[2] Bruns G., Harding J.: Algebraic aspects of orthomodular lattices. in Coecke B., Moore D. and Wilce A., Eds., Current Research in Operational Quantum Logic, 2000, pp. 37--65. MR 1907155 | Zbl 0955.06003
[3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. MR 1861369
[4] Greechie R.J.: Orthomodular lattices admitting no states. J. Combinatorial Theory 10 (1971), 119--132. DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[5] Hamhalter J.: Quantum Measure Theory. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. MR 2015280 | Zbl 1038.81003
[6] Handbook of Quantum Logic and Quantum Structures. ed. by K. Engesser, D.M. Gabbay and D. Lehmann, Elsevier, 2007. MR 2408886 | Zbl 1184.81003
[7] Gudder S.P.: Stochastic Methods in Quantum Mechanics. North-Holland, New York-Oxford, 1979. MR 0543489 | Zbl 0439.46047
[8] Harding J., Jager E., Smith D.: Group-valued measures on the lattice of closed subspaces of a Hilbert space. Internat. J. Theoret. Phys. 44 (2005), 539--548. DOI 10.1007/s10773-005-3981-x | MR 2153018 | Zbl 1130.81306
[9] Kalmbach G.: Orthomodular Lattices. Academic Press, London, 1983. MR 0716496 | Zbl 0554.06009
[10] Maeda F., Maeda S.: Theory of Symmetric Lattices. Springer, Berlin-Heidelberg-New York, 1970. MR 0282889 | Zbl 0361.06010
[11] Matoušek M.: Orthocomplemented lattices with a symmetric difference. Algebra Universalis 60 (2009), 185--215. DOI 10.1007/s00012-009-2105-5 | MR 2491422
[12] Matoušek M., Pták P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1--21. DOI 10.1007/s11083-008-9102-8 | MR 2487165
[13] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics. Pacific J. Math. 135 (1988), 361--369. DOI 10.2140/pjm.1988.135.361 | MR 0968618
[14] Navara M.: An orthomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122 (1994), 7--12. DOI 10.1090/S0002-9939-1994-1191871-X | MR 1191871 | Zbl 0809.06008
[15] Navara M., Pták P.: For $n\geq 5$ there is no nontrivial $Z_2$-measure on $L(R^n)$. Internat. J. Theoret. Phys. 43 (2004), 1595--1598. DOI 10.1023/B:IJTP.0000048805.76224.2d | MR 2108296
[16] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR 1176314
[17] Svozil K., Tkadlec J.: Greechie diagrams, noexistence of measures in quantum logics, and Kochen--Specker-type constructions. J. Math. Phys. 37 (1996), 5380--5401. DOI 10.1063/1.531710 | MR 1417146
[18] Varadarajan V.S.: Geometry of Quantum Theory I, II. Van Nostrand, Princeton, 1968, 1970.
[19] Weber H.: There are orthomodular lattices without non-trivial group-valued states: A computer-based construction. J. Math. Anal. Appl. 183 (1994), 89--93. DOI 10.1006/jmaa.1994.1133 | MR 1273434 | Zbl 0797.06010
Partner of
EuDML logo