[1] Batagelj V.:
An improved inductive definition of two restricted classes of triangulations of the plane. Combinatorics and graph theory (Warsaw 1987), 11--18, Banach Center Publ., 25, PWN, Warsaw, 1989.
MR 1097631 |
Zbl 0742.05033
[3] Cavenagh N.J., Donovan D., Drápal A.:
$4$-homogeneous latin trades. Australas. J. Combin. 32 (2005), 285--303.
MR 2139816
[6] Cavenagh N.J., Wanless I.M.: Latin trades in groups defined on planar triangulations. J. Algebr. Comb. (in print), DOI 10.1007/s10801-008-0165-9.
[7] Drápal A., Kepka T.:
Exchangeable partial groupoids I. Acta Univ. Carolin. Math. Phys. 24 (1983), 57--72.
MR 0733686
[8] Drápal A., Kepka T.:
Group modifications of some partial groupoids. Ann. Discrete Math. 18 (1983), 319--332.
MR 0695819
[9] Drápal A.:
On a planar construction of quasigroups. Czechoslovak Math. J. 41 (1991), 538--548.
MR 1117806
[10] Drápal A.: Latin Squares and Partial Groupoids. (in Czech), Candidate of Science Thesis, Charles University, Prague, 1988.
[12] Drápal A.: Geometry of Latin Trades. manuscript circulated at the conference Loops'03, Prague, 2003.
[14] Drápal A., Hämäläinen C., Kala V.: Latin bitrades, dissections of equilateral triangles and abelian groups. J. Comb. Des. (in print), DOI 10.1002/jcd.20237.
[15] Drápal A., Lisoněk P.:
Generating spherical Eulerian triangulations. Discrete Math.(to appear).
MR 2592497
[16] Grannell M.J., Griggs T.S., Knor M.:
Biembeddings of symmetric configurations and $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 49 (2008), 411--420.
MR 2490436
[18] Heawood P.J.: On the four colour map theorem. Quart. J. 29 (1898), 270--285.
[20] Keedwell A.D.:
Critical sets in latin squares and related matters: an update. Util. Math. 65 (2004), 97--131.
MR 2048415 |
Zbl 1053.05019
[21] Lefevre J., Cavenagh N.J., Donovan D., Drápal A.:
Minimal and minimum size latin bitrades of each genus. Comment. Math. Univ. Carolin. 48 (2007), 189--203.
MR 2338087
[22] Lefevre J.G., Donovan D., Drápal A.:
Permutation representation of $3$ and $4$-homogenous latin bitrades. Fund. Inform. 84 (2008), 99--110.
MR 2422431