Previous |  Up |  Next

Article

References:
[1] BUSCH P.-GRABOWSKI M.-LAHTI P.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. MR 1356220 | Zbl 0863.60106
[2] CHANG C. C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
[3] CHEVALIER G.-PULMANNOVÁ S.: Some ideal lattices on partial abelian monoids and effect algebras. Order 17 (2000), 75-92. MR 1776935
[4] DRAZIN M. P.: Natural structures on semigroups with involution. Bull. Amer. Math. Soc. 84 (1978), 139-141. MR 0486234 | Zbl 0395.20044
[5] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000. MR 1861369 | Zbl 0987.81005
[6] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346. MR 1304942 | Zbl 1213.06004
[7] GIUNTINI R.-GREULING H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945. MR 1013913
[8] de GROOTE H. F.: On a canonical lattice structure on the effect algebra of a von Neumann algebra. arXiv:math-ph/0410018vl.
[9] GUDDER S.: An order for quantum observables. Math. Slovaca 56 (2006), 573-589. MR 2293588 | Zbl 1141.81008
[10] GUDDER S.-PULMANNOVA S.: Quotients of partial abelian monoids. Algebra Universalis 38 (1997), 395-421. MR 1626347 | Zbl 0933.03082
[11] HEDLÍKOVÁ J.-PULMANNOVÁ S.: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenian. (N.S.) 45 (1996), 247-279. MR 1451174 | Zbl 0922.06002
[12] JANOWITZ M. F.: A note on generalized orthomodular lattices. J. Natur. Sci. Math. 8 (1968), 89-94. MR 0231762 | Zbl 0169.02104
[13] JENČA G.: Notes on $R_1$-ideals in partial abelian monoids. Algebra Universalis 43 (2000), 307-319. MR 1785318
[14] KADISON R.: Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc. 34 (1951), 505-510. MR 0042064 | Zbl 0043.11501
[15] KOPKA F.-CHOVANEC F.: D-posets. Math. Slovaca 44 (1994), 21-34. MR 1290269 | Zbl 0789.03048
[16] MAYET-IPPOLITO A.: Generalized orthomodular posets. Demonstratio Math. 24 (1991), 263-274. MR 1142894 | Zbl 0755.06006
[17] OLSON P.: The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28 (1971), 537-543.
[18] PULMANNOVÁ S.-VINCEKOVÁ E.: Riesz ideals in generalized effect algebras and in their unitizations. Algebra Universalis (To appear). MR 2373250 | Zbl 1139.81007
[19] RIEČANOVÁ Z.-MARINOVÁ I.: Generalized homogeneous, prelattice and MV-effect algebras. Kybernetika (Prague) 41 (2005), 129-142. MR 2138764
[20] TOPPING D. M.: Lectures on von Neumann Algebras. Van Nostrand, London, 1971. Zbl 0218.46061
Partner of
EuDML logo