[1] BUSCH P.-GRABOWSKI M.-LAHTI P.:
Operational Quantum Physics. Springer-Verlag, Berlin, 1995.
MR 1356220 |
Zbl 0863.60106
[2] CHANG C. C.:
Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[3] CHEVALIER G.-PULMANNOVÁ S.:
Some ideal lattices on partial abelian monoids and effect algebras. Order 17 (2000), 75-92.
MR 1776935
[4] DRAZIN M. P.:
Natural structures on semigroups with involution. Bull. Amer. Math. Soc. 84 (1978), 139-141.
MR 0486234 |
Zbl 0395.20044
[5] DVUREČENSKIJ A.-PULMANNOVÁ S.:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1861369 |
Zbl 0987.81005
[6] FOULIS D. J.-BENNETT M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346.
MR 1304942 |
Zbl 1213.06004
[7] GIUNTINI R.-GREULING H.:
Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945.
MR 1013913
[8] de GROOTE H. F.: On a canonical lattice structure on the effect algebra of a von Neumann algebra. arXiv:math-ph/0410018vl.
[10] GUDDER S.-PULMANNOVA S.:
Quotients of partial abelian monoids. Algebra Universalis 38 (1997), 395-421.
MR 1626347 |
Zbl 0933.03082
[11] HEDLÍKOVÁ J.-PULMANNOVÁ S.:
Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenian. (N.S.) 45 (1996), 247-279.
MR 1451174 |
Zbl 0922.06002
[12] JANOWITZ M. F.:
A note on generalized orthomodular lattices. J. Natur. Sci. Math. 8 (1968), 89-94.
MR 0231762 |
Zbl 0169.02104
[13] JENČA G.:
Notes on $R_1$-ideals in partial abelian monoids. Algebra Universalis 43 (2000), 307-319.
MR 1785318
[14] KADISON R.:
Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc. 34 (1951), 505-510.
MR 0042064 |
Zbl 0043.11501
[16] MAYET-IPPOLITO A.:
Generalized orthomodular posets. Demonstratio Math. 24 (1991), 263-274.
MR 1142894 |
Zbl 0755.06006
[17] OLSON P.: The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28 (1971), 537-543.
[18] PULMANNOVÁ S.-VINCEKOVÁ E.:
Riesz ideals in generalized effect algebras and in their unitizations. Algebra Universalis (To appear).
MR 2373250 |
Zbl 1139.81007
[19] RIEČANOVÁ Z.-MARINOVÁ I.:
Generalized homogeneous, prelattice and MV-effect algebras. Kybernetika (Prague) 41 (2005), 129-142.
MR 2138764
[20] TOPPING D. M.:
Lectures on von Neumann Algebras. Van Nostrand, London, 1971.
Zbl 0218.46061