Previous |  Up |  Next

Article

References:
[1] ALSEDÀ L.-LLIBRE J.-MISIUREWICZ M.: Combinatorial Dynamics and Entropy in Dimension One. Adv. Ser. Nolinear Dynam. 5, World Scientific Publishing Co., Inc, River Edge, NJ, 1993. MR 1255515 | Zbl 0843.58034
[2] BAJGER M.: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106-121. MR 1600588 | Zbl 0891.39017
[3] CIEPLINSKI K.: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363-383. MR 1721896 | Zbl 0935.39010
[4] CIEPLIŃSKI K.: On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103-118. MR 1735195 | Zbl 0945.39006
[5] CОRNFELD I. R-FОMIN S. V.-SINAI Y. G.: Ergodic Theory. Grundlehren Math. Wiss. 245, Spirnger Verlag, Berlin-Heidelberg-New York, 1982. MR 0832433
[6] de MELО W.-van STREIN S.: One-dimensional Dynamics. Ergeb. Math. Grenzegeb. (3) 25, Springer-Verlag, New York-Berlin, 1993. MR 1239171
[7] JARCZYK W.: Babbage equation on the circle. Publ. Math. Debrecen 63 (2003), 389-400. MR 2018071
[8] KUCZMA M.-CHOCZEWSKI B.-GER R.: Iterative Functional Equations. Encyclopaedia Math. Appl. 32, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1990. MR 1067720 | Zbl 0703.39005
[9] LLIBRE J.: Minimal periodic orbits of continuous mappings of the circle. Proc. Amer. Math. Soc. 83 (1981), 625-628. MR 0627708 | Zbl 0469.54024
[10] WALTERS P.: An Introduction to Ergodic Theory. Grad. Text in Math. 79, Springer-Verlag, New York-Heidelberg-Berlin, 1982. MR 0648108 | Zbl 0475.28009
Partner of
EuDML logo