[1] ALSEDÀ L.-LLIBRE J.-MISIUREWICZ M.:
Combinatorial Dynamics and Entropy in Dimension One. Adv. Ser. Nolinear Dynam. 5, World Scientific Publishing Co., Inc, River Edge, NJ, 1993.
MR 1255515 |
Zbl 0843.58034
[2] BAJGER M.:
On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106-121.
MR 1600588 |
Zbl 0891.39017
[3] CIEPLINSKI K.:
On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363-383.
MR 1721896 |
Zbl 0935.39010
[4] CIEPLIŃSKI K.:
On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103-118.
MR 1735195 |
Zbl 0945.39006
[5] CОRNFELD I. R-FОMIN S. V.-SINAI Y. G.:
Ergodic Theory. Grundlehren Math. Wiss. 245, Spirnger Verlag, Berlin-Heidelberg-New York, 1982.
MR 0832433
[6] de MELО W.-van STREIN S.:
One-dimensional Dynamics. Ergeb. Math. Grenzegeb. (3) 25, Springer-Verlag, New York-Berlin, 1993.
MR 1239171
[7] JARCZYK W.:
Babbage equation on the circle. Publ. Math. Debrecen 63 (2003), 389-400.
MR 2018071
[8] KUCZMA M.-CHOCZEWSKI B.-GER R.:
Iterative Functional Equations. Encyclopaedia Math. Appl. 32, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1990.
MR 1067720 |
Zbl 0703.39005
[9] LLIBRE J.:
Minimal periodic orbits of continuous mappings of the circle. Proc. Amer. Math. Soc. 83 (1981), 625-628.
MR 0627708 |
Zbl 0469.54024
[10] WALTERS P.:
An Introduction to Ergodic Theory. Grad. Text in Math. 79, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
MR 0648108 |
Zbl 0475.28009