Previous |  Up |  Next

Article

References:
[1] ARUMUGAM S.-KALA R.: Domsaturation number of a graph. Indian J. Pure Appl. Math. 33 (2002), 1671-1676. MR 1951019 | Zbl 1066.05098
[2] FLACH P.-VOLKMANN, L: Estimations for the domination number of a graph. Discrete Math. 80 (1990), 145-151. MR 1048457 | Zbl 0699.05055
[3] GAREY M. R.-JONSON D. S.: Computers and Intractability: A Guide to the Theory of NP Completeness. Freeman, New York, 1979. MR 0519066 | Zbl 0411.68039
[4] HAYNES T. W.-HEDETNIEMI S. T.-SLATER P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998. MR 1605684 | Zbl 0890.05002
[5] Domination in Graphs: Advanced Topics. (T. W. Haуnes, S. T. Hedetniemi, P. J. Slater, eds.), Marcel Dekker, New York, 1998. MR 1605685 | Zbl 0883.00011
[6] HENNING M. A.: Restricted domination in graphs. Discrete Math. 254 (2002), 175-189. MR 1910108 | Zbl 1116.05057
[7] McCUAIG W.-SHEPHERD B.: Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762. MR 1025896 | Zbl 0708.05058
[8] ORE O.: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Amer. Math. Soc, Providence, RI, 1962. MR 0150753 | Zbl 0105.35401
[9] PAYAN, C: Sur le nombre ďabsorption ďun graph simple. Cahiеrs du centrе ďеtudes de recherche operationelle 17 (1975), 307-317. MR 0401551
[10] SAMPATHKUMAR E.-NEERLAGI P. S.: Dominatгon and neighborhood critical, fixed, free and totally free points. Sankhyã Ser. A 54 (1992), 403-407.
[11] SANCHIS L. A.: Bounds related to domination in graphs with minimum degree two. J. Graph Thеоry 25 (1997), 139-152. MR 1448851 | Zbl 0876.05047
Partner of
EuDML logo