Previous |  Up |  Next

Article

References:
[1] AGARWAL R. P.-O'REGAN D.-WONG P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic Publ., Dordrecht, 1999. MR 1680024 | Zbl 1157.34301
[2] BAI C.-FANG J.: Existence of multiple positive solutions for nonlinear m-point boundary value problems. Appl. Math. Comput. 140 (2003), 297-305. MR 1953901 | Zbl 1030.34026
[3] BAI C.-FANG J.: Existence of multiple positive solutions for nonlinear multi-point boundary value problems. J. Math. Anal. Appl. 281 (2003), 76-85. MR 1980075
[4] BITSADZE A. V.: On the theory of nonlocal boundary value problems. Soviet Math Dock, (please specify the journal) 30 (1964), 8-10.
[5] BITSADZE A. V.-SAMARSKII A. A.: Some elementary generalizations of linear elliptic boundary value problems. Dokal. Akad. Nauk. SSSR 185 (1969), 739-742. MR 0247271
[6] DE COSTER C.: Pairs of positive solutions for the one-dimension p-Laplacian. Nonlinear Anal. 23 (1994), 669-681. MR 1297285
[7] DEIMLING K.: Nonlinear Functional Analysis. Springer-Verlag, New York, 1985. MR 0787404 | Zbl 0559.47040
[8] GUO D.-LAKSHMIKANTHAM V.: Nonlinear Problems on Abstract Cones. Academic Press, San Diego, CA, 1988.
[9] GUPTA C. P.: A generalized multi-point boundary value problem for second-order ordinary differential equations. Appl. Math. Comput. 89 (1998), 133-146. MR 1491699 | Zbl 0910.34032
[10] GUPTA C. P.: A non-resonant multi-point boundary value problem for a p-Laplacian type operator. J. Differential Equations 10 (2003), 143-152. MR 1976639 | Zbl 1032.34012
[11] IL'IN V.-MOISEEV E.: Nonlocal boundary value problems of the second kind for a Sturm-Liouvile operator. Differ. Equ. 23 (1987), 979-987.
[12] JIANG D.-GUO W.: Upper and lower solution method and a singular boundary value problem for one-dimension p-Laplacian. J. Math. Anal. Appl. 252 (2000), 631-648. MR 1800189
[13] JIANG D.-LIU H.: On the existence of nonnegative radial solutions for the one-dimension p-Laplacian elliptic systems. Ann. Polon. Math. 71 (1999), 19-29. MR 1684042
[14] KARAKOSTAS G. L.-TSAMATOS P. CH.: Sufficient conditions for the existence of nonnegative solutions of a local boundary value problem. Appl. Math. Lett. 15 (2002), 401-407. MR 1902271
[15] LAN K.: Multiple positive solutions of semi-linear differential equations with singularities. J. London Math. Soc. 63 (2001), 690-704. MR 1825983
[16] LIAN W.-WONG F.: Existence of positive solutions for higher-order generalized p-Laplacian BVPs. Appl. Math. Lett. 13 (2000), 35-43. MR 1772689 | Zbl 0964.34018
[17] LIU Y.-GE W.: Multiple positive solutions to a three-point boundary value problem with p-Laplacian. J. Math. Anal. Appl. 277 (2003), 293-302. MR 1954477 | Zbl 1026.34028
[18] LIU B.-YU J.: Solvability of multi-point boundary value problems at resonance. Appl. Math. Comput. 143 (2003), 275-299. MR 1981696 | Zbl 1021.34013
[19] MA R.: Existence of solutions of nonlinear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001), 556-567. MR 1821757 | Zbl 0988.34009
[20] MA R.-CASTANEDA N.: Existence of solutions of non-linear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001), 556-567. MR 1821757
[21] O'REGAN D.: Positive solutions to singular and nonsingular second-order boundary value problems. J. Math. Anal. Appl. 142 (1989), 40-52. MR 1011407
[22] O'REGAN D.: Some general existence principles and results for $[\Phi(y')]' = q(t) f(t,y,y')$ $(0 < t < 1)$. SIAM J. Math. Anal. 24 (1993), 648-668. MR 1215430
[23] WANG J.-GUO W.: A singular boundary value problem for one-dimension p-Laplacian. J. Math. Anal. Appl. 201 (2001), 851-866.
[24] WANG J. Y.-ZHENG D. W.: On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian. ZAMM Z. Angew. Math. Mech. 77 (1997), 477-479. MR 1455893 | Zbl 0879.34032
[25] XIAOMING H.-GE W.: Triple solutions for second order three-point boundary value problems. J. Math. Anal. Appl. 268 (2002), 256-265. MR 1893205 | Zbl 1043.34015
[26] GUO Y.-GE W.: Three positive solutions for the one dimension p-Laplacian. J. Math. Anal. Appl. 286 (2003), 491-508. MR 2008845
[27] LU H.-O'REGAN D.-ZHONG C.: Multiple positive solutions for one dimension I singular p-Laplacian. Appl. Math. Comput. 133 (2002), 407-422. MR 1924626
[28] KARAKOSTAS G. L.: Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a supmultiplicative-like function. Differ. Equ. 69 (2004), 1-13. MR 2057656
[29] KARAKOSTAS G. L.: Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function. Differ. Equ. 68 (2004), 1-12. MR 2057655 | Zbl 1057.34010
Partner of
EuDML logo