Previous |  Up |  Next

Article

References:
[1] CHANG C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302 | Zbl 0084.00704
[2] DVUREČENSKIJ A.: Pseudo MV-algebras are intervals in l-groups. J. Aust Math. Soc. 72 (2002), 427-445. MR 1902211
[3] DVUREČENSKIJ A.-VETTERLEIN T.: Pseudoeffect algebras. I. Basic properties; II. Group representations. Internat. J. Theoret. Phys. 40 (2001), 685-701; 703-726. MR 1831592
[4] GEORGESCU G.-IORGULESCU A.: Pseudo MV algebras. Mult.-Valued Log. 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[5] GEORGESCU G.-IORGULESCU A.: Pseudo MV algebras: A non-commutative extension of MV-algebras. In: The Proceeding of the Fourth International Symposium on Economic Informatics, 6-9 May, INFOREC Printing House, Bucharest, 1999, pp. 961-968.
[6] GLASS A. M. W.: Partially Ordered Groups. Series in Algebra 7, World Scientific, Singapore, 1999. MR 1791008 | Zbl 0933.06010
[7] JAKUBÍK J.: Isometrics of lattice ordered groups. Czechoslovak Math. J. 30 (127) (1980), 142-152. MR 0565917
[8] JAKUBÍK J.: On isometries of non-abelian lattice ordered groups. Math. Slovaca 31 (1981), 171-175. MR 0611629 | Zbl 0457.06014
[9] JAKUBÍK J.: Direct product decomposition of MV-algebras. Czechoslovak Math. J. 44 (119) (1992), 725-739. MR 1295146
[10] JAKUBÍK J.: Direct product decomposition of pseudo MV-algebras. Arch. Math. (Brno) 37 (2001), 131-142. MR 1838410
[11] JAKUBÍK J.: On intervals and isometries of MV-algebras. Czechoslovak Math. J. 52 (127) (2002), 651-663. MR 1923269 | Zbl 1012.06013
[12] JAKUBÍK J.: Isometries of MV-algebras. Math. Slovaca 54 (2004), 43-48. MR 2074028 | Zbl 1087.06006
[13] JASEM M.: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119-136. MR 1274597 | Zbl 0782.06012
[14] JASEM M.: Weak isometries in partially ordered groups. Acta Math. Univ. Comenian. (N.S.) 63 (1994), 259-265. MR 1319446 | Zbl 0821.06016
[15] JASEM M.: Weak isometries and direct decompositions of partially ordered groups groups. Tatra Mt. Math. Publ. 5 (1995), 131-142. MR 1384803
[16] JASEM M.: Isometries in non-abelian multilattice groups. Math. Slovaca 46 (1996), 491-496. MR 1451037 | Zbl 0890.06012
[17] KOVÁŘ T.: A general theory of dually residuated lattice ordered semigroups. Ph.D. Thesis, Palacky University, Olomouc 1996.
[18] KOVÁŘ T.: On (weak) zero-fixing isometries in dually residuated lattice-ordered semi-groups. Math. Slovaca 50 (2000), 123-125. MR 1763114
[19] KÜHR J.: Pseudo BL-algebras and DRl-monoids. Math. Bohem. 128 (2003), 199-208. MR 1995573
[20] KÜHR J.: Dually Residuated Lattice Ordered Monoids. Doctoral Thesis, Palacky University, Olomouc, 2003. Zbl 1141.06014
[21] KÜHR J.: Prime ideals and polars in DRl-monoids and pseudo BL-algebras. Math. Slovaca 53 (2003), 233-246. MR 2025020
[22] MUNDICI D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Func. Anal. 65 (1986), 15-63. MR 0819173
[23] RACHŮNEK J.: Isometries in ordered groups. Czechoslovak Math. J. 34(127) (1984), 334-341. MR 0743498 | Zbl 0558.06020
[24] RACHŮNEK J.: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48(123) (1998), 365-372. MR 1624268 | Zbl 0952.06014
[25] RACHŮNEK J.: $MV$-algebras are categorically equivalent to a class of $DR\ell_{l(i)}$-semi-groups. Math. Bohem. 123 (1998), 437-441. MR 1667115
[26] RACHŮNEK J.: Non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (127) (2002), 255-273. MR 1905434 | Zbl 1012.06012
[27] SWAMY K. L. M.: Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1978), 59-64. MR 0463074 | Zbl 0409.06007
[28] SWAMY K. L. M.-SUBBA RAO B. V.: Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes Kobe Univ. 8 (1980), 369-379. MR 0601906
[29] ŠALOUNOVÁ D.: Lex-ideals of $DR\ell$-monoids and GMV-algebras. Math. Slovaca 53 (2003), 321-330. MR 2025465 | Zbl 1072.06009
Partner of
EuDML logo