[1] CHOVANEC F.-KOPKA F.:
Difference posets in the quantum structure background. Internat. J. Theoret. Phуs. 39 (2000), 571 583.
MR 1790895
[2] CIGNOLI R.-D'OTTAVIANO I. M. I.-MUNDICI D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097 |
Zbl 0937.06009
[3] CONRAD P.:
The structure of a lattice-ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171-180.
MR 0116059 |
Zbl 0103.01501
[4] DVUREČENSKIJ A.:
Pseudo $MV$-algebras are intervals in $\ell$-groups. J. Aust. Math. Soc. 72 (2002), 427-445.
MR 1902211 |
Zbl 1027.06014
[5] FOULIS D.-BENNET M. K.:
Effect algebras and unsharp quantum logics. Found Phуs. 24 (1994), 1331 1352.
MR 1304942 |
Zbl 1213.06004
[6] FRIČ R.:
Coproducts of D-posets and their application to probability. Internat. J. Theoret. Phуs. 43 (2004), 1625-1633.
MR 2108299 |
Zbl 1070.81009
[7] GEORGESCU G.-IORGULESCU A.:
Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: Information technology. Proceedings of the 4th International Sуmposium on Economic Informatics Held in Bucharest, Romania, Maу 6-9, 1999. (1. Smeureanu et al., eds.), Editura Inforec, Bucharest, 1999, pp. 961-968.
MR 1730100 |
Zbl 0985.06007
[9] HARMINC M.:
Sequential convergences in lattice ordered groups. Czechoslovak Math. J. 39 (1989), 232-238.
MR 0992130
[10] JAKUBÍK J.:
Lattice ordered groups having a largest convergence. Czechoslovak Math. J. 39 (1989), 717-729.
MR 1018008 |
Zbl 0713.06009
[11] JAKUBÍK J.:
Sequential convergences on MV-algebras. Czechoslovak Math. J. 45 (1995), 709-726.
MR 1354928 |
Zbl 0845.06009
[12] JAKUBÍK J.:
Convergences on lattice ordered groups with a finite number of disjoint elements. Math. Slovaca 56 (2006), 289-299.
MR 2250080 |
Zbl 1141.06016
[13] RACHŮNEK J.:
A noncommutative generalization of MV-algebras. Czechoslovak Math. J. 25 (2002), 255-273.
MR 1905434