Previous |  Up |  Next

Article

References:
[1] TANG X. H.-YU J. S.: frac{3}{2}-global attractivity of zero solution of "Food-Limited" type functional differential equations. Sci. China Ser. A 10 (2000), 900-912. MR 1843756
[2] GOPASAMY K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Boston, 1992. MR 1163190
[3] LIU Y. J.: Global attractivity for a differential-difference population model. Appl. Math. E-Notes 1 (2001), 56-64. MR 1833838 | Zbl 0983.34067
[4] FENG W.-ZHAO A. M.-YAN J. Y.: Global attractivity of generalized delay Logistic equation. Appl. Math. J. Chinese Univ. Ser. A 16 (2001), 136-142. MR 1831225
[5] YU J. S.: Global attractivity of zero solution of a class of functional differential equations and its applications. Sci. China Ser. A 26 (1996), 23-33. MR 1397479
[6] KUANG Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston, 1993. MR 1218880 | Zbl 0777.34002
[7] GOPASAMY K.-KULENOVIC M. R. S.-LADAS G.: Time lags in a food-limited population model. Appl. Anal. 31 (1988), 225-237. MR 1017513
[8] GROVE E. A.-LAD AS G.-QIAN, C : Global attractivity in a food-limited population model. Dynam. Systems Appl. 2 (1993), 243-250. MR 1227002 | Zbl 0787.34061
[9] KUANG Y.: Global stability for a class of non-autonomous delay equations. Nonlinear Anal. 17 (1991), 627-634. MR 1128964
[10] HALE J. K.: Theory of Functional Differential Equations. Springer-Verlag, New York, 1977. MR 0508721 | Zbl 0352.34001
[11] MATSUNAGA H.-MIYAZAKI R.-HARA J.: Global attractivity results for nonlinear delay differential equations. J. Math. Anal. Appl. 234 (1999), 77-90. MR 1694794 | Zbl 0932.34075
[12] SO J. W. H.-YU J. S.: Global attractivity for a population model with time delay. Proc. Amer. Math. Soc. 123 (1995), 2687-2694. MR 1317052 | Zbl 0844.34080
[13] QIAN C.: Global attractivity in nonlinear delay differential equations. J. Math. Anal. Appl. 197 (1996), 529-547. MR 1372196
Partner of
EuDML logo