[3] FLEISCHER I.:
Semigroup of not bijective finite selfmaps of an infinite set. Algebra Universalis 33 (1995), 186-190; Semigroup Forum 58 (1999), 468-470.
MR 1318982 |
Zbl 0821.03030
[5] HINDLEY J. R.-SELDIN J.:
Introduction to Combinators and X-Calculus. London Math. Soc. Stud. Texts 1, Cambridge Univ. Press, Cambridge, 1986.
MR 0879272
[6] HOWIE J. M.:
An Introduction to Semigroup Theory. London Math. Soc. Monogr. 7, Academic Press, London-New York-San Francisco, 1976.
MR 0466355 |
Zbl 0355.20056
[7] JÓNSSON B.:
Defining relations for full semigroups of finite transformations. Michigan Math. J. 9 (1962), 77-85.
MR 0133390 |
Zbl 0111.03803
[8] LAUSCH H.-NÖBAUER W.:
Algebra of Polynomials. North-Holland Math. Library 5, North-Holland Publ. Comp./Amer. Elsevier Publ. Comp., Inc, Amsterdam-London/New York, 1973.
MR 0349544 |
Zbl 0283.12101
[9] MAĽCEV A. I.: Iterative Algebras and Posťs Varieties (Russian). [English translation in: The Metamathematics of Algebraic Systems. Collected papers: 1936-1967. Stud. Logic Found. Math. 66, North-Holland Publ. Comp., Amsterdam-London, 1971].
[10] MENGER K.:
On substitutive algebra and its syntax. Z. Math. Logik Grundlag. Math. 10 (1964), 81-104.
MR 0158814 |
Zbl 0132.24601
[11] ROSENBERG I. G.:
Maľcev algebras for universal algebra terms. In: Algebraic Logic and Universal Algebra in Computer Science, Conference, Ames, Iowa, USA, June 1-4, 1988. Proceedings (C. H. Bergman et al., eds.), Lecture Notes in Comput. Sci. 425, Springer-Verlag, Berlin, 1990, pp. 195-208.
MR 1077844
[12] SCHÖNFINKEL M.:
Bausteine der Mathematischen Logik. Math. Ann. 92 (1924), 305-316. [English translation in: HEIJENOORT, J. VAN: From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967].
MR 1512218
[13] STENLUND S.: Combinators, X-Terms and Proof Theory. D. Reidel, Dordrecht, 1972.
[14] WHITLOCK H. I.:
A composition algebra for multiplace functions. Math. Ann. 157 (1964), 167-178.
MR 0173647 |
Zbl 0126.03501