Previous |  Up |  Next

Article

References:
[1] ANDERSEN E. S.-JESSEN B.: On the introduction of measures in infinite product sets. Danske Vid. Selsk. Mat.-Fys. Medd. 25 (1948). MR 0027041 | Zbl 0031.01305
[2] BERBERIAN S. K.: Notes on Spectral Theory. D. van Nostrand Co., Inc, Princeton, 1966. MR 0190760 | Zbl 0138.39104
[3] BERG C.-CHRISTENSEN J. P. R.-RESSEL P.: Harmonic Analysis on Semigroups. Grad. Texts in Math. 100, Springer, New York, 1984. MR 0747302 | Zbl 0619.43001
[4] BIRMAN M.-SOLOMYAK M.: Tensor products of a finite number of spectral measures is always a spectral measure. Integral Equations Operator Theory 24 (1996), 179-187. MR 1371945
[5] BIRMAN M. SH.-VERSHIK A. M.-SOLOMYAK M. Z.: Product of commuting spectral measures need not be countably additive. Funktsional Anal. i Prilozhen. 13(1) (1978), 61-66 [English translation: Functional Anal. Appl. 13 (1979), 48-49]. MR 0527523
[6] CASSINELLI G.-DE VITO E.: Square-integrability modulo a subgroup. Trans. Amer. Math. Soc. 355 (2003), 1443-1465. MR 1946399
[7] CASSINELLI G.-DE VITO E.-LAHTI P.-LEVRERO A.: Phase space observables and isotypic spaces. J. Math. Phys. 41 (2000), 5883-5896. MR 1779140
[8] CASSINELLI G.-DE VITO E.-LAHTI P.-PELLONPÄÄ J.-P.: Covariant localizations in the torus and the phase observables. J. Math. Phys. 43 (2002), 693-704. MR 1878565
[9] CHEN P. D.-LI J. F.: On the existence of product stochastic measures. Acta Math. Appl. Sinica 7 (1991), 120-134. MR 1105385 | Zbl 0735.60001
[10] DAVIES E. B.: The Quantum Theory of Open Systems. Academic Press, London-New York-San Francisco, 1976. MR 0489429
[11] DAVIES E. B.-LEWIS J. T.: An operational approach to quantum probability. Comm. Math. Phys. 17 (1970), 239-260. MR 0263379 | Zbl 0194.58304
[12] DOUGLAS R. G.: Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972. MR 0361893 | Zbl 0247.47001
[13] DUDLEY R. M.: A note on products of spectral measures. In: Vector and Operator Valued Measures and Applications (Proc. Sympos., Alta, Utah, 1972), Academic Press, New York, 1973, pp. 125-126. MR 0336418
[14] DUNFORD N.-SCHWARTZ J. T.: Linear Operators, Part I: General Theory. Interscience Publishers, New York, 1958. MR 1009162
[15] DVURECENSKIJ A.-LAHTI P.-YLINEN K.: Positive operator measures determined by their moment operators. Rep. Math. Phys. 45 (2000), 139-146. MR 1751508
[16] GARRISON J. C.-WONG J.: Canonically conjugate pairs, uncertainty relations, and phase operators. J. Math. Phys. 11 (1970), 2242-2249. MR 0266532 | Zbl 0196.28003
[17] HALMOS P. R.: Measure Theory. Van Nostrand, Toronto, 1950. MR 0033869 | Zbl 0040.16802
[18] HOLEVO A. S.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam, 1982. MR 0681693 | Zbl 0497.46053
[19] KARNI S.-MERZBACH E.: On the extension of bimeasures. J. Anal. Math. 55 (1990), 1-16. MR 1094708 | Zbl 0724.28003
[20] KRAUS K.: States, Effects, and Operations. Springer-Verlag, Berlin, 1983. MR 0725167 | Zbl 0545.46049
[21] LAHTI P.-MACZYŃSKI M.-YLINEN K.: The moment operators of phase space observables and their number margins. Rep. Math. Phys. 41 (1998), 319-331. MR 1653885
[22] LAHTI P.-PELLONPAA J.-P.-YLINEN K.: Operator integrals and phase space observables. J. Math. Phys. 40 (1999), 2181-2189. MR 1683153 | Zbl 0984.47054
[23] LAHTI P.-PULMANNOVA S.: Coexistent observables and effects in quantum mechanics. Rep. Math. Phys. 39 (1997), 339-351. MR 1477898 | Zbl 0924.47054
[24] LAHTI P.-PULMANNOVA S.: Coexistence vs. functional coexistence of quantum observables. Rep. Math. Phys. 47 (2001), 199-212. MR 1836331 | Zbl 1005.81006
[25] LAHTI P.-PULMANNOVA S.-YLINEN K.: Coexistent observables and effects in a convexity approach. J. Math. Phys. 39 (1998), 6364-6371. MR 1656976 | Zbl 0935.81010
[26] LERNER E. C.-HUANG H. W.-WALTERS G. E.: Some mathematical properties of oscillator phase operators. J. Math. Phys. 11 (1970), 1679-1684. MR 0260346
[27] LEWIS D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157-165. MR 0259064 | Zbl 0195.14303
[28] LUDWIG G.: Foundations of Quantum Mechanics. Vol. I, Springer-Verlag, Berlin, 1983. MR 0690770 | Zbl 0509.46057
[29] MLAK W.: Notes on quantum circular operators. Preprint 303, Institute of Mathematics, Polish Academy of Sciences, 1984.
[30] MARCZEWSKI E.-RYLL-NARDZEWSKI C.: Remarks on the compactness and non direct products of measures. Fund. Math. 40 (1953), 165-170. MR 0059996 | Zbl 0052.05001
[31] NAIMARK M. A.: On a representation of additive operator set functions. Comptes Rendus (Doklady) Acad. Sci. URSS 41 (1943), 359-361. MR 0010789 | Zbl 0061.25410
[32] OZAWA M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25 (1984), 79-87. MR 0728889
[33] OZAWA M.: Phase operator problem and macroscopic extension of quantum mechanics. Ann. Physics 257 (1997), 65-83. MR 1455986 | Zbl 0921.03059
[34] PAULSEN V. I.: Completely Bounded Maps and Dilations. Pitman Res. Notes Math. Ser. 146, Longman, London, 1986. MR 0868472 | Zbl 0614.47006
[35] PELLONPÄÄ J.-P.: Covariant phase observables in quantum mechanics. Ann. Univ. Turku. Ser. A I no. 288 (2002). MR 1975169 | Zbl 0969.81003
[36] PUTNAM C. P. : Commutation Properties of Hilbert Space Operators and Related Topics. Springer-Verlag, Berlin, 1967. MR 0217618
[37] RIESZ F.-SZ.-NAGY B.: Functional Analysis. Dover Publications, Inc., New York, 1990. MR 1068530 | Zbl 0732.47001
[38] RUDIN W.: Functional Analysis. McGraw Hill, New York, 1973. MR 0365062 | Zbl 0253.46001
[39] STINESPRING W. F.: Positive functions on $C^\ast$-algebras. Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 0069403 | Zbl 0064.36703
[40] STULPE W.: Classical Representations of Quantum Mechanics Related to Statistically Complete Observables. Wissenschaft und Technik Verlag, Berlin, 1997. Zbl 0898.46069
[41] VARADARAJAN V. S.: Geometry of Quantum Theory. Springer, Berlin, 1985. MR 0805158 | Zbl 0581.46061
[42] YLINEN K.: On vector bimeasures. Ann. Mat. Pura Appl. 117 (1978), 115-138. MR 0515957
[43] YLINEN K.: Positive operator bimeasures and a noncommutative generalization. Studia Math. 118 (1996), 157-168. MR 1389762 | Zbl 0399.46032
[44] YLINEN K.: Aspects of operator measures and bimeasures susceptible to a nonstandard treatment. In: Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 08/1999, Nonstandard Analysis and Related Methods, and their Applications 21. 2.-27. 2. 1999. http://www.mfo.de/Meetings/Documents/1999/08/ReportJ08_99.ps Zbl 0862.46038
Partner of
EuDML logo