Previous |  Up |  Next

Article

References:
[1] BERAN L.: Orthomodular Lattices - Algebraic Approach. Academia, Czechoslovak Academy of Sciences/D. Reidel Publishing Company, Praha/Dordrecht, 1984. MR 0785005
[2] BUSCH P.-LAHTI P. J.-MITTELSTADT P.: The Quantum Theory of Measurement. Lecture Notes in Phys. New Ser. m Monogr. 31, Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991. MR 1176754
[3] BUSCH P.-GRABOWSKI M.-LAHTI P. J.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. MR 1356220 | Zbl 0863.60106
[4] CHANG C. C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
[5] CHOVANEC F.-KÔPKA F.: $D$-lattices. Internat. J. Theoret. Phys. 34 (1995), 1297-1302. MR 1353674 | Zbl 0840.03046
[6] CHOVANEC F.- KÔPKA F.: Boolean $D$-posets. Tatra Mt. Math. Publ. 10 (1997), 183-197. MR 1469294
[7] DVUREČENSKIJ A.: On effect algebras that can be covered by $MV$-algebras. Internat. J. Theoret. Phys. 41 (2002), 221-229. MR 1888439
[8] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000. MR 1861369 | Zbl 0987.81005
[9] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1362. MR 1304942 | Zbl 1213.06004
[10] FOULIS D. J.-GREECHIE R.-RÜTTIMANN G.: Filters and supports in orthoalgebras. Internat. J. Theoret. Phys. 35 (1995), 789-802. MR 1162623
[11] GIUNTINI R.-GRUEULING H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1994), 769-780. MR 1013913
[12] JENČA G.: Blocks in homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98. MR 1848081
[13] JENČA G.: A Cantor-Bernstein type theorem for effect algebras. Algebra Universalis 48 (2002), 399-411. MR 1967089 | Zbl 1061.06020
[14] JENČA G.-PULMANNOVÁ S.: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Universalis 47 (2002), 443-477. MR 1923079 | Zbl 1063.06011
[15] JENČA G.-RIEČANOVÁ Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
[16] KALMBACH G.: Orthomodular Lattices. Academic Press, London-New York, 1983. MR 0716496 | Zbl 0528.06012
[17] KÔPKA F.: Compatibility in $D$-posets. Internat. J. Theoret. Phys. 34 (1995), 1525-1531. MR 1353696 | Zbl 0851.03020
[18] KÔPKA F.-CHOVANEC F.: $D$-posets. Math. Slovaca 44 (1994), 21-34. MR 1290269 | Zbl 0789.03048
[19] LOCK P. L.-HARDEGREE G. M.: Connections among quantum logics: Part 2. Quantum event logic. Internat. J. Theoret. Phуs. 24 (1985), 55-61. MR 0791832
[20] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publ., Dordrecht-Boston-London, 1991. MR 1176314 | Zbl 0743.03039
[21] PULMANNOVÁ S.: On connections among some orthomodular structures. Demonstratio Math. 30 (1997), 313-328. MR 1469597 | Zbl 0947.06004
[22] PULMANNOVÁ S.: Compatibility and decompositions of effects. J. Math. Phys. 43 (2002), 2817-2830. MR 1893702 | Zbl 1059.81016
[23] PULMANNOVÁ S.: A note on observables on $MV$-algebras. Soft Computing 4 (2000), 45-48. Zbl 1005.06006
[24] RAVINDRAN K.: On a Structure Theory of Effect Algebras. PhD Theses, Kansas State Univ., Manhattan, Kansas, 1996. MR 2694228
[25] RIEČANOVÁ Z.: A generalization of blocks for lattice effect algebras. Internat. J. Theoret. Phys. 39 (2000), 855-865. MR 1762594
[26] RIEČANOVÁ Z.: On order topological continuity of effect algebra operations. In: Contributions to General Algebra 12, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 349-354. MR 1778747 | Zbl 0960.03054
[27] RIEČANOVÁ Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525-531. MR 1853730 | Zbl 0989.03071
[28] SARYMSAKOV T. A., al: Uporyadochennye algebry. FAN, Tashkent, 1983. (Russian) MR 0781349 | Zbl 0542.46001
[29] SCHRÖDER B.: On three notions of orthosummability in orthoalgebras. Internat. J. Theoret. Phys. 34 (1999), 3305-3313. MR 1764466 | Zbl 0957.03061
Partner of
EuDML logo