[1] BERAN L.:
Orthomodular Lattices - Algebraic Approach. Academia, Czechoslovak Academy of Sciences/D. Reidel Publishing Company, Praha/Dordrecht, 1984.
MR 0785005
[2] BUSCH P.-LAHTI P. J.-MITTELSTADT P.:
The Quantum Theory of Measurement. Lecture Notes in Phys. New Ser. m Monogr. 31, Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991.
MR 1176754
[3] BUSCH P.-GRABOWSKI M.-LAHTI P. J.:
Operational Quantum Physics. Springer-Verlag, Berlin, 1995.
MR 1356220 |
Zbl 0863.60106
[4] CHANG C. C.:
Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[6] CHOVANEC F.- KÔPKA F.:
Boolean $D$-posets. Tatra Mt. Math. Publ. 10 (1997), 183-197.
MR 1469294
[7] DVUREČENSKIJ A.:
On effect algebras that can be covered by $MV$-algebras. Internat. J. Theoret. Phys. 41 (2002), 221-229.
MR 1888439
[8] DVUREČENSKIJ A.-PULMANNOVÁ S.:
New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.
MR 1861369 |
Zbl 0987.81005
[9] FOULIS D. J.-BENNETT M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1362.
MR 1304942 |
Zbl 1213.06004
[10] FOULIS D. J.-GREECHIE R.-RÜTTIMANN G.:
Filters and supports in orthoalgebras. Internat. J. Theoret. Phys. 35 (1995), 789-802.
MR 1162623
[11] GIUNTINI R.-GRUEULING H.:
Toward a formal language for unsharp properties. Found. Phys. 19 (1994), 769-780.
MR 1013913
[12] JENČA G.:
Blocks in homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98.
MR 1848081
[13] JENČA G.:
A Cantor-Bernstein type theorem for effect algebras. Algebra Universalis 48 (2002), 399-411.
MR 1967089 |
Zbl 1061.06020
[14] JENČA G.-PULMANNOVÁ S.:
Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Universalis 47 (2002), 443-477.
MR 1923079 |
Zbl 1063.06011
[15] JENČA G.-RIEČANOVÁ Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
[17] KÔPKA F.:
Compatibility in $D$-posets. Internat. J. Theoret. Phys. 34 (1995), 1525-1531.
MR 1353696 |
Zbl 0851.03020
[19] LOCK P. L.-HARDEGREE G. M.:
Connections among quantum logics: Part 2. Quantum event logic. Internat. J. Theoret. Phуs. 24 (1985), 55-61.
MR 0791832
[20] PTÁK P.-PULMANNOVÁ S.:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publ., Dordrecht-Boston-London, 1991.
MR 1176314 |
Zbl 0743.03039
[21] PULMANNOVÁ S.:
On connections among some orthomodular structures. Demonstratio Math. 30 (1997), 313-328.
MR 1469597 |
Zbl 0947.06004
[22] PULMANNOVÁ S.:
Compatibility and decompositions of effects. J. Math. Phys. 43 (2002), 2817-2830.
MR 1893702 |
Zbl 1059.81016
[23] PULMANNOVÁ S.:
A note on observables on $MV$-algebras. Soft Computing 4 (2000), 45-48.
Zbl 1005.06006
[24] RAVINDRAN K.:
On a Structure Theory of Effect Algebras. PhD Theses, Kansas State Univ., Manhattan, Kansas, 1996.
MR 2694228
[25] RIEČANOVÁ Z.:
A generalization of blocks for lattice effect algebras. Internat. J. Theoret. Phys. 39 (2000), 855-865.
MR 1762594
[26] RIEČANOVÁ Z.:
On order topological continuity of effect algebra operations. In: Contributions to General Algebra 12, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 349-354.
MR 1778747 |
Zbl 0960.03054
[27] RIEČANOVÁ Z.:
Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525-531.
MR 1853730 |
Zbl 0989.03071
[29] SCHRÖDER B.:
On three notions of orthosummability in orthoalgebras. Internat. J. Theoret. Phys. 34 (1999), 3305-3313.
MR 1764466 |
Zbl 0957.03061