[1] ALFSEN E.-SCHULTZ F.:
On the geometry of noncommutative spectral theory. Bull. Amer. Math. Soc. 81 (1975), 893-895.
MR 0377549 |
Zbl 0337.46014
[2] BENNETT M. K.-FOULIS D. J.:
Interval and scale effect algebras. Adv. in Appl. Math. 19 (1997), 200-215.
MR 1459498 |
Zbl 0883.03048
[4] FOULIS D. J.:
MV and Heyting effect algebras. Found. Phys. 30 (2000), 1687-1706.
MR 1810197
[5] FOULIS D. J.:
Compressions on partially ordered abelian groups. (Submitted).
Zbl 1063.47003
[7] FOULIS D. J.-GREECHIE R. J.-BENNETT M. K.:
The transition to unigroups. Internat. J. Theoret. Phys. 37 (1998), 45-64.
MR 1637148 |
Zbl 0904.06013
[8] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.:
The center of an effect algebra. Order 12 (1995), 91-106.
MR 1336539 |
Zbl 0846.03031
[9] GOODEARL K. R.:
Partially Ordered Abelian Groups with Interpolation. Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986.
MR 0845783 |
Zbl 0589.06008
[10] GUDDER S. P.:
Examples, problems, and results in effect algebras. Internat. J. Theoret. Phys. 35 (1996), 2365-2376.
MR 1423412 |
Zbl 0868.03028
[11] GUDDER S. P.:
Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23-30.
MR 1655076 |
Zbl 0939.03073
[12] GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G.:
Convex and linear effect algebras. Rep. Math. Phys. 44 (1999), 359-379.
MR 1737384 |
Zbl 0956.46002
[13] HANDELMAN, D-HIGGS D.-LAWRENCE J.:
Directed abelian groups, countably continuous rings, and Rickart $C^\ast$ -algebras. J. London Math. Soc 21 (1980), 193-202.
MR 0575375
[14] JENČA G.:
Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98.
MR 1848081 |
Zbl 0985.03063
[15] KADISON R. V.:
Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc 2 (1951), 505-510.
MR 0042064 |
Zbl 0043.11501
[16] PTÁK P.-PULMANNOVÁ S.:
Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht-Boston-London, 1991.
MR 1176314 |
Zbl 0743.03039
[17] PULMANNOVÁ S.:
Effect algebras with the Riesz decomposition property and $AF$ $C^\ast$-algebras. Found. Phys. 29 (1999), 1389-1401.
MR 1739751
[18] RIESZ F.-SZ.-NAGY B.:
Functional Analysis. Frederick Ungar Publishing Co., New York, 1955.
MR 0071727