Previous |  Up |  Next

Article

References:
[1] ALFSEN E.-SCHULTZ F.: On the geometry of noncommutative spectral theory. Bull. Amer. Math. Soc. 81 (1975), 893-895. MR 0377549 | Zbl 0337.46014
[2] BENNETT M. K.-FOULIS D. J.: Interval and scale effect algebras. Adv. in Appl. Math. 19 (1997), 200-215. MR 1459498 | Zbl 0883.03048
[3] BLYTH T. S.-JANOWITZ M. F.: Residuation Theory. Pergamon, New York, 1972. MR 0396359 | Zbl 0301.06001
[4] FOULIS D. J.: MV and Heyting effect algebras. Found. Phys. 30 (2000), 1687-1706. MR 1810197
[5] FOULIS D. J.: Compressions on partially ordered abelian groups. (Submitted). Zbl 1063.47003
[6] FOULIS D. J.: Removing the torsion from a unital group. Rep. Math. Phys. (To appear). MR 2016215 | Zbl 1054.81005
[7] FOULIS D. J.-GREECHIE R. J.-BENNETT M. K.: The transition to unigroups. Internat. J. Theoret. Phys. 37 (1998), 45-64. MR 1637148 | Zbl 0904.06013
[8] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.: The center of an effect algebra. Order 12 (1995), 91-106. MR 1336539 | Zbl 0846.03031
[9] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986. MR 0845783 | Zbl 0589.06008
[10] GUDDER S. P.: Examples, problems, and results in effect algebras. Internat. J. Theoret. Phys. 35 (1996), 2365-2376. MR 1423412 | Zbl 0868.03028
[11] GUDDER S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23-30. MR 1655076 | Zbl 0939.03073
[12] GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G.: Convex and linear effect algebras. Rep. Math. Phys. 44 (1999), 359-379. MR 1737384 | Zbl 0956.46002
[13] HANDELMAN, D-HIGGS D.-LAWRENCE J.: Directed abelian groups, countably continuous rings, and Rickart $C^\ast$ -algebras. J. London Math. Soc 21 (1980), 193-202. MR 0575375
[14] JENČA G.: Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98. MR 1848081 | Zbl 0985.03063
[15] KADISON R. V.: Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc 2 (1951), 505-510. MR 0042064 | Zbl 0043.11501
[16] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht-Boston-London, 1991. MR 1176314 | Zbl 0743.03039
[17] PULMANNOVÁ S.: Effect algebras with the Riesz decomposition property and $AF$ $C^\ast$-algebras. Found. Phys. 29 (1999), 1389-1401. MR 1739751
[18] RIESZ F.-SZ.-NAGY B.: Functional Analysis. Frederick Ungar Publishing Co., New York, 1955. MR 0071727
Partner of
EuDML logo