Previous |  Up |  Next

Article

References:
[1] AGAFONOVA L. V.- KLIMKIN V. M.: A Nikodym theorem for triangular set functions. Siberian Math. J. 15 (1974), 669-674. MR 0348073
[2] ANTOSIK P.- PAP E.: A Simplification of the proof of Rosenthaľs lemma for measures on fields. In: Convergence methods in analуsis, Proc. 2nd Conf., Szczуrk/Pol., 1981, pp. 26-31.
[3] ANTOSIK P.-SAEKI S.: A lemma on set functions and its applications. Dissertationes Math. (Rozprawу Mat.) 340 (1995), 13-21. MR 1342564 | Zbl 0837.28011
[4] ANTOSIK P.-SWARTZ C.: Matrix Methods in Analysis. Lecture Notes in Math. 1113, Springer Verlag, New York, 1985. MR 0781343 | Zbl 0564.46001
[5] ANTOSIK P.-SWARTZ, C: A theorem on matrices and its applications in functional analysis. Studia Math. 77 (1984), 197-205. MR 0745276 | Zbl 0538.46031
[6] AVALLONE A.-LEPELLERE M. A.: Modular functions: uniform boundedness and compactness. Rend. Circ. Mat. Palermo (2) (To appear). MR 1633479 | Zbl 0931.28009
[7] BERAN L.: Orthomodular Lattices, Algebraic Approach. Academia Prague, Reidel, Dordrecht, 1984. MR 0785005
[8] BIRKHOFF G.-VON NEUMANN J.: The logic of quantum mechanics. Ann. of Math. (2) 37 (1936), 823-843. MR 1503312
[9] CONSTANTINESCU C.: Some properties of spaces of measures. Atti Sem. Mat. Fis. Univ. Modena Suppl. 35 (1989). MR 0994282 | Zbl 0696.46027
[10] D'ANDREA A. B.-DE LUCIA P.: The Brooks-Jewett theorem on an orthomodular lattice. J. Math. Anal. Appl. 154 (1991), 507-522. MR 1088647
[11] DE LUCIA P.-PAP E.: Nikodym convergence theorem for uniform space valued functions defined on D-posets. Math. Slovaca 45 (1995), 367-376. MR 1387053 | Zbl 0856.28008
[12] DE LUCIA P.-SALVATI S.: A Caficro characterization of uniform s-boundedn ss. Rend. Circ. Mat. Palermo 40 (199 4), 121-128. MR 1407085
[13] DE LUCIA P.-TRAYNOR T.: Non-commutative group valued measures on an orthomodular poset. Math. Japonica 40 (1994), 309-315. MR 1297247 | Zbl 0812.28008
[14] DIESTEL J.-UHL J. J.: Vector Measures. Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977. MR 0453964 | Zbl 0369.46039
[15] DOBRAKOV I.: On submeasures I. Dissertationes Math. (Rozprawy Mat.) 112 (1974), 1-35. MR 0367140 | Zbl 0292.28001
[16] DREWNOWSKI L.: On the continuity of certain non-additive set functions. Colloq. Math. 38 (1978), 243-253. MR 0492153 | Zbl 0398.28003
[17] GUARIGLIA E.: K-triangular functions on an ortho-modular lattice and the Brooks-Jewett theorem. Rad. Mat. 6 (1990), 241-251. MR 1146880
[18] GUARIGLIA E.: Uniform boundedness theorems for k-triangular set functions. Acta Sci. Math. (Szeged) 54 (1990), 391-407. MR 1096818 | Zbl 0726.28008
[19] GUSEL'NIKOV N. S.: Triangular set functions and Nikodym's theorem on the uniform boundedness of a family of measures. Mat. Sb. 35 (1979), 19-33. Zbl 0418.28003
[20] GUSEL'NIKOV N. S.: Extension of quasi-Lipschitz set functions. Math. Notes 17 (1975), 14-19. MR 0374376 | Zbl 0355.28001
[21] HABIL E. D.: The Brooks-Jewett theorem for k-triangular functions on difference posets and orthoalgebras. Math. Slovaca 47 (1997), 417-428. MR 1796954 | Zbl 0961.28003
[22] KALMBACH G.: Orthomodular Lattices. Academic Press, London-New York, 1983. MR 0716496 | Zbl 0528.06012
[23] KUPKA J.: A short proof and generalization of a measure theoretic disjointization lemma. Proc. Amer. Math. Soc. 45 (1974), 70-72. MR 0342666 | Zbl 0291.28004
[24] PAP E.: The Vitali-Hahn-Saks theorems for k-triangular set functions. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. MR 0922985 | Zbl 0626.28001
[25] PAP E.: A generalization of a theorem of Dieudonne for k-triangular set functions. Acta Sci. Math. (Szeged) 50 (1986), 159-167. MR 0862190 | Zbl 0609.28002
[26] PAP E.: Null-Additive Set Functions. Math. Appl. 337, Kluwer Acad. Publ., Dordrecht, 1995. MR 1368630 | Zbl 0968.28010
[27] PAP E.: Funkcionalna analiza. Institut za matematiku, Novi Sad, 1982. MR 0683763 | Zbl 0496.46001
[28] PTAK P.-PULMANNOVA S.: Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht, 1991. MR 1176314 | Zbl 0743.03039
[29] SALVATI S.: Teoremi di convergenza in teoria della misura non commutativa. PhD Thesis, 1997.
[30] SWARTZ C.: An Introduction to Functional Analysis. Dekker, New York, 1992. MR 1156078 | Zbl 0751.46002
[31] VON NEUMANN J.: Matematische Grendlagen der Quantunmechanik. Springer Verlag, Berlin, 1932 [English translation: Princeton University Press 1955].
[32] WEBER H.: A diagonal theorem. Answer to a question of Antosik. Bull. Polish Acad. Sci. Math. 41 (1993), 95-102. MR 1414755 | Zbl 0799.40005
[33] WEBER H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodym's boundedness theorem. Rocky Mountain J. Math. 16 (1986), 253-275. MR 0843053 | Zbl 0604.28006
Partner of
EuDML logo