[1] BUSSEMAKER F. C.-CVETKOVIC D.:
There are exactly 13 connected cubic integral graphs. Publ. Elektrotech. Fak. Ser. Mat. Fiz. 544 (1976), 43-48.
MR 0465944
[2] CVETKOVIC D.-DOOB M.-SACHS H.:
Spectra of Graphs. VEB Deutscher Verlag d. Wiss, Berlin, 1980.
MR 0572262 |
Zbl 0458.05042
[4] HARARY F.-SCHWENK A. J.:
Which graphs have integral spectra?. In: Graphs and Combinatorics. Lecture Notes in Math. 406, Springer-Verlag, Berlin, 1974, pp. 45-51.
MR 0387124
[5] HARARY F.:
Four difficult unsolved problems in graph theory. In: Recent Advances in Graph Theory, Academia, Praha, 1975, pp. 253-255.
MR 0382042 |
Zbl 0329.05125
[6] HIC P.-NEDELA R.-PAVLIKOVA S.:
Front divisor of trees. Acta Math. Univ. Comenian. LXI (1992), 69-84.
MR 1205861
[7] HIC P.-NEDELA R.:
Note on zeros of the characteristic polynomial of balanced integral trees. Acta Univ. Mathaei Belii Ser. Math. 3 (1995), 31-35.
MR 1409887
[8] LI X. L.-LIN G. N.:
On integral trees problems. Kexue Tongbao (Chinese) 33 (1988), 802-806.
MR 0963194
[10] SCHWENK J. A.:
Computing the characteristic polynomial of a graphs. In: Graphs and Combinatorics. Lecture notes in Math. 406, Springer-Verlag, Berlin, 1974, pp. 247-251.
MR 0387126
[11] SCHWENK A. J.:
Exactly thirteen connected cubic graphs have integral spectra. In: Notes in Math. Ser. A 642, Springer-Verlag, Berlin, 1978, pp. 516-533.
MR 0499520 |
Zbl 0376.05050
[12] SCHWENK A. J.-WATANABE M.:
Integral starlike trees. J. Austral. Math. Soc. Ser. A 28 (1979), 120-128.
MR 0541173 |
Zbl 0428.05021