[2] ELMENDORF A. D.:
Systems of fixed point set. Trans. Amer. Math. Soc. 277 (1983), 275-284.
MR 0690052
[3] GOLASIŃSKI M.:
An equivariant dual J. H. C. Whitehead Theorem. In: Colloq. Math. Soc. János Bolyai 55, North-Нolland, Amsterdam, 1989, pp. 283-288.
MR 1244370
[4] ILLMAN S.:
Equivariant Algebraic Topology Thesis. Pгinceton University, Princeton, N. J., 1972.
MR 2622205
[5] ILLMAN S.:
Equivariant singular homology and cohomology. Mem. Amer. Math. Soc. 156 (1975).
MR 0375286 |
Zbl 0297.55003
[6] MATUMOTO T.:
On G-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374.
MR 0345103 |
Zbl 0232.57031
[7] MATUMOTO T.:
Equivariant cohomology theories on G-CW complexes. Osaka J. Math. 10 (1973), 51-68.
MR 0343259 |
Zbl 0272.55013
[8] MATUMOTO T.:
A complement to the theory of G-CW complexes. Japan J. Math. 10 (1984), 353-374.
MR 0884424 |
Zbl 0594.57021
[9] MOERDIJK I.-SVENSSON J. A.:
A Shapiro lemma for diagrams of spaces with applications to equivariant topology. Compositio Math. 96 (1995), 249-282.
MR 1327146 |
Zbl 0853.55005
[10] MOLLER J. M.:
On equivariant function spaces. Pacific J. Math. 142 (1990), 103-119.
MR 1038731
[11] PIACENZA R. J.:
Homotopy theory of diagrams and CW-complexes over a category. Canad. J. Math. 43 (1991), 814-824.
MR 1127031 |
Zbl 0758.55015
[12] QUILLEN D. G.:
Homotopical Algebra. Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967.
MR 0223432 |
Zbl 0168.20903
[13] SHITANDA Y.:
Abstract homotopy theory and homotopy theory of functor category. Hiroshima Math. J. 19 (1989), 477-497.
MR 1035138 |
Zbl 0701.18010
[14] WANER S.:
Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258 (1980), 351-368.
MR 0558178 |
Zbl 0444.55010
[15] WILSON S. J.:
Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc. 212 (1975), 155-171.
MR 0377859